ACTIVATION OF MAP KINASE ASSOCIATED WITH THE PRIMING EFFECT OF LHRH

1994 ◽  
Vol 140 (2) ◽  
pp. R15-R18 ◽  
Author(s):  
R. Mitchell ◽  
P.J. Sim ◽  
T. Leslie ◽  
M.S. Johnson ◽  
F.J. Thomson

ABSTRACT A MAP kinase activity assay was developed to determine whether the LHRH receptor could activate this enzyme (particularly during LHRH priming). In anterior pituitary tissue from prooestrous rats LHRH caused concentration-dependent activation of MAP kinase after 5-10 min and continued for up to 60 min of incubation. The magnitude of this response correlated with that of LHRH priming on various days of the oestrous cycle but not with the magnitude of 1st hour (unprimed) LHRH-induced LH release. The response to LHRH was mimicked by a phorbol ester but not by ionomycin and was blocked with high potency by GF 109203X but not by H7 (in a similar manner to the PKC species that mediates LHRH priming). Neither the tyrosine kinase inhibitor lavendustin A nor the protein synthesis inhibitor cycloheximide blocked LHRH-induced MAP kinase activation. The possible functional significance of MAP kinase activation in gonadotrophs is considered with respect to LHRH priming.

1977 ◽  
Vol 232 (1) ◽  
pp. F50-F57
Author(s):  
T. P. Dousa ◽  
L. D. Barnes

Results of this study demonstrate that vasopressin activates protein kinase in intact renal medullary cells as detected by measurement of the (-cyclic AMP/+cyclic AMP) protein kinase activity ratios in freshly prepared tissue extracts (40,000 X g supernates) from bovine renal medullary slices. The activation of protein kinase was specific for vasopressin since parathyroid hormone, histamine, angiotensin II, or the inactive analog of vasopressin did not activate protein kinase. There was a direct correlation between the extent of protein kinase activation and the elevation in tissue levels of cyclic AMP elicited by increasing doses of vasopressin or with an increase in incubation time. The elevation of tissue cyclic AMP level and maximum activation of protein kinase reached maximum level at a vasopressin concentration of about 2 X 10(-9) M. Incubation of slices with vasopressin caused a dose-dependent decrease in the cyclic AMP-dependent protein kinase activity in the 40,000 X g supernate of homogenate from the renal medullary slices. This effect of vasopressin was specific for protein kinase since activity of lactate dehydrogenase or a specific [3H]colchicine-binding activity was not affected, and the decrease in the protein kinase was not due to the accumulation of a heat-stable protein kinase inhibitor. There was an increase in protein kinase was not due to the accumulation of a heat-stable protein kinase inhibitor. There was an increase in protein kinase activity extracted from 40,000 X g pellets of homogenate prepared from slices exposed to vasopressin. Results thus provide evidence that cyclic AMP-mediated protein kinase activation in the intact cells is an integral part of cellular response of the mammalian renal medulla to vasopressin.


1997 ◽  
Vol 326 (3) ◽  
pp. 867-876 ◽  
Author(s):  
Inbal HAZAN ◽  
Raya DANA ◽  
Yoseph GRANOT ◽  
Rachel LEVY

The role of cytosolic phospholipase A2 (cPLA2) and its mode of activation by opsonized zymosan (OZ) was studied in human neutrophils in comparison with activation by PMA. The activation of cPLA2 by 1 mg/ml OZ or 50 ng/ml PMA is evidenced by its translocation to the membrane fractions on stimulation. This translocation is consistent with dithiothreitol (DTT)-resistant phospholipase A2 (PLA2) activity detected in the membranes of activated cells. Neutrophils stimulated by either OZ or PMA exhibited an immediate stimulation of extracellular-signal-regulated kinases (ERKs). The inhibition of ERKs, DTT-resistant PLA2 and NADPH oxidase activities by the MAP kinase kinase inhibitor PD-98059 indicates that ERKs mediate the activation of cPLA2 and NADPH oxidase stimulated by either OZ or PMA. The protein kinase C (PKC) inhibitor GF-109203X inhibited epidermal growth factor receptor peptide kinase activity, the release of [3H]arachidonic acid, DTT-resistant PLA2 activity and superoxide generation induced by PMA, but did not inhibit any of these activities induced by OZ. PKC activity was similarly inhibited by GF-109203X in membrane fractions separated from neutrophils stimulated by either PMA or OZ. In the presence of the tyrosine kinase inhibitor genistein, ERKs, PLA2 and NADPH oxidase activities were inhibited in cells stimulated by OZ, whereas they were hardly affected in cells stimulated by PMA. The results suggest that the activation of cPLA2 by PMA or OZ is mediated by ERKs. Whereas PMA stimulates ERKs activity through a PKC-dependent pathway, signal transduction stimulated by OZ involves tyrosine kinase activity leading to activation of ERKs via a PKC-independent pathway.


1992 ◽  
Vol 132 (2) ◽  
pp. 277-283 ◽  
Author(s):  
G. Robinson ◽  
J. J. Evans ◽  
K. J. Catt

ABSTRACT Gonadotrophin-releasing activity of oxytocin has previously been demonstrated in vitro and in vivo. This study investigated whether oxytocin is also able to induce LH accumulation in pituitary cells. Following trypsin digestion and mechanical dispersion, pituitary cells from female rats were incubated with oxytocin (100 nmol/l) for 24 h. LH release stimulated by oxytocin increased (P < 0·001) progressively during the incubation indicating a different secretory pattern from the more rapid but less sustained secretion stimulated by gonadotrophin-releasing hormone. Oxytocin also enhanced (P < 0·01) total LH accumulation in the incubation system (released plus cell contents) which was apparent after 7–11 h of stimulation. The release of LH stimulated by oxytocin was reduced by the protein synthesis inhibitor cycloheximide (10 μmol/l). However, cycloheximide did not completely block oxytocin-stimulated LH release; there remained some LH release above that seen in non-stimulated controls (P < 0·01) revealing the presence of a cycloheximide-resistant component in the release mechanism. Furthermore, accumulation of total LH in 24 h incubations was suppressed (P < 0·01) by cycloheximide. The advancement in LH release which oxytocin has been shown to induce in vivo in pro-oestrous rats was accompanied by an early reduction of pituitary LH stores. However, the fall normally observed in LH content during the surge was markedly attenuated by the oxytocin treatment. Thus, loss of pituitary LH stores was less in oxytocin-treated rats than in saline-treated controls, even though net LH release into plasma was increased. Therefore, oxytocin stimulated the replenishment of LH stores. Although the mechanism(s) remains to be defined and the relationships between in-vitro and in-vivo results are as yet uncharacterized, the present study demonstrates that oxytocin treatment stimulates LH production in both dispersed cells and intact pituitaries in situ. Journal of Endocrinology (1992) 132, 277–283


2005 ◽  
Vol 18 (2) ◽  
pp. 233-244 ◽  
Author(s):  
A. Appert-Collin ◽  
F. H. T. Duong ◽  
P. Passilly Degrace ◽  
A. Bennasroune ◽  
P. Poindron ◽  
...  

Neurotrophic growth factors are involved in cell survival. However, natural growth factors have a very limited therapeutic use because of their short half-life. In the present study, we investigated the mechanism of action of a non peptidic neurotrophic drug, Xaliproden, a potential molecule for the treatment of motoneuron diseases, since the transduction pathways of this synthetic 5-HT1A agonist are very poorly understood. Xaliproden does not activate the Trk receptor but causes a rapid increase in the activities of the ERK1 and ERK2 isoforms of MAP kinase, which then rapidly decrease to the basal level. We demonstrate that isoforms of the she adapter protein are phosphorylated independently of each other and are probably not the source of the Xaliproden-induced MAP kinases activation. The inhibitor of Ras farnesylation, FPT-1, and the protein kinase C inhibitors, GF 109203X and chelerythrine, inhibited the Xaliproden-induced MAP kinase activation, suggesting p21Ras and PKC involvement. Moreover, the observations that the 5-HT1A antagonist, pindobind, and pertussis toxin abolished the Xaliproden-induced ERK stimulation suggested that Xaliproden activates the MAP kinase pathways by stimulating the G-protein-coupled receptor, 5-HT1A. These results demonstrated clearly that the non peptidic compound, Xaliproden, exerts its neurotrophic effects through a mechanism of action differing from that of neurotrophins. These findings suggest that this compound does not involve MAPK activation by TrkA receptor stimulation but acts by MAP Kinase pathway by a pertussis toxin-sensitive mechanism involving 5-HT1A receptors, p21 Ras and MEK-1 and by PKC and Akt pathways.


1994 ◽  
Vol 141 (1) ◽  
pp. 15-31 ◽  
Author(s):  
F J Thomson ◽  
M S Johnson ◽  
R Mitchell ◽  
B Wolbers

Abstract The phospholipase A2 (PLA2) inhibitors, quinacrine, p-bromophenacyl bromide, ONO-RS-082, aristolochic acid and chloracysine blocked the priming effect of LHRH, but not acute LHRH-induced gonadotrophin release measured in anterior pituitary pieces in pro-oestrous rats in vitro. These results suggest that the intracellular mechanisms underlying LHRH priming are distinct from those which mediate LH release in the present circumstances in that they involve PLA2. Furthermore, neither LHRH-induced LH release from preprimed tissue nor Ca2+-induced LH release were attenuated by quinacrine, indicating that this inhibitor does not interfere with the general Ca2+-dependent secretory apparatus of the gonadotroph and that the critical period for its action is in the induction of priming. LHRH induced the release of [3H]arachidonic acid ([3H]AA) from [3H]AA-prelabelled anterior pituitary tissue from pro-oestrous rats; a response which was sensitive to inhibitors of PLA2, of protein kinase C (PKC) and of protein synthesis. Activation of PKC also resulted in [3H]AA release which was inhibited with exactly the same pharmacological profile as the response to LHRH. Both gonadotrophin secretion and [3H]AA release responses to LHRH and to phorbol ester varied in parallel during the oestrous cycle and in ovariectomized/oestradiol-17β-replaced animals, as did their sensitivity to quinacrine and the protein synthesis inhibitor cycloheximide. These results indicate that LHRH priming is dependent on a hormonally regulated cascade involving a distinct form of PKC acting through a protein synthesis-dependent step to release AA by means of PLA2 activity. The priming effect was mimicked (at least in part) by conditioning preincubation with AA, confirming the functional relevance of this signalling cascade. Results using standard inhibitors of lipoxygenase/epoxygenase pathways were equivocal as to whether these pathways were critically involved, whilst cyclo-oxygenase inhibitors were completely without effect. The steps downstream from AA (and its possible metabolites) by which stimulus–secretion coupling is up-regulated in priming remain to be clarified. Journal of Endocrinology (1994) 141, 15–31


Zygote ◽  
1996 ◽  
Vol 4 (3) ◽  
pp. 191-198 ◽  
Author(s):  
Maki Inoue ◽  
Kunihiko Naito ◽  
Taisuke Nakayama ◽  
Eimei Sato

SummaryPreviously we have shown that mitogen-activated protein (MAP) kinase activity abruptly increases at the first metaphase (M1) and remains significantly higher than that at the germinal vesicle (GV) stage until the second metaphase (M2) in porcine oocytes cultured in vitro. The present paper describes how the mechanism of the blockage of meiotic maturation by protein sythesis inhibition involves MAP kinase regulation. Cycloheximide arrested both germinal vesicle breakdown (GVBD) and the normal transition from M1 to M2. MAP kinase activation was also reduced in these maturation-inhibited oocytes. By using immunofluorescence microscopy with the monoclonal antibody raised against rat α-tubulin, we showed that cycloheximide caused morphological abnormality in a spindle at M1, but not at M2. All these results indicate that in porcine oocytes: (1) GV blockage by protein synthesis inhibition involves the suppression of both histone H1 kinase and MAP kinase activation, (2) during the transition from M1 to M2, maintenance of a normal metaphasic spindle and high MAP kinase activity require protein synthesis, and (3) once the M2 cytoskeletal structures have been completed, and/or after the ‘critical period’, cytostatic factor activity is independent of protein synthesis.


1994 ◽  
Vol 5 (4) ◽  
pp. 1074-1080
Author(s):  
Y Wang ◽  
J Pouysségur ◽  
M J Dunn

Accumulating evidence suggests that endothelin (ET) contributes to the pathophysiology of such disorders as acute renal failure, cyclosporine-mediated renal and vascular toxicity, and perhaps even glomerular inflammation. The postreceptor signaling pathways that mediate the actions of ET in these pathophysiologic conditions may include activation of kinase cascades. Thus, the effects of ET isopeptides on p42 and p44 mitogen-activated protein (MAP) kinase activity in rat glomerular mesangial cells were examined. ET-1 activated both p42 and p44 MAP kinases with similar dose responses and different kinetics. The threshold for kinase activation was 10(-9) M ET-1. ET-1 stimulated p42 and p44 MAP kinases with similar rapid (5 min) but different sustained activation of p42 (3 to 6 h) and p44 (1 to 2 h). Endothelin-3 (ET-3) also activated both isoforms of MAP kinase but with a threshold at 10(-7) M. Compared with ET-1, ET-3 stimulated only a rapid increase of p42 MAP kinase activity. We further investigated which ET receptors are coupled to MAP kinase activation. BQ-123, an ETA blocker, completely blocked the responsiveness of the MAP kinase to either ET-1 or ET-3. In Chinese hamster lung fibroblasts transfected with ETA or ETB cDNA, both receptors showed a rapid stimulation of MAP kinase in response to ET-1. These results suggest that ET can activate MAP kinases through both ET receptors but act exclusively through ETA in glomerular mesangial cells.


1999 ◽  
Vol 277 (3) ◽  
pp. F328-F337 ◽  
Author(s):  
Babu V. Bassa ◽  
Daeyoung D. Roh ◽  
Nosratola D. Vaziri ◽  
Michael A. Kirschenbaum ◽  
Vaijinath S. Kamanna

Although lysophosphatidylcholine (LPC)-mediated cellular responses are attributed to the activation of protein kinase C (PKC), relatively little is known about the upstream signaling mechanisms that regulate the activation of PKC and downstream mitogen-activated protein (MAP) kinase. LPC activated p42 MAP kinase and PKC in mesangial cells. LPC-mediated MAP kinase activation was inhibited (but not completely) by PKC inhibition, suggesting additional signaling events. LPC stimulated protein tyrosine kinase (PTK) activity and induced Ras-GTP binding. LPC-induced MAP kinase activity was blocked by the PTK inhibitor genistein. Because LPC increased PTK activity, we examined the involvement of phospholipase Cγ-1 (PLCγ-1) as a key participant in LPC-induced PKC activation. LPC stimulated the phosphorylation of PLCγ-1. PTK inhibitors suppressed LPC-induced PKC activity, whereas the same had no effect on phorbol 12-myristate 13-acetate-mediated PKC activity. Other lysophospholipids [e.g., lysophosphatidylinositol and lysophosphatidic acid (LPA)] also induced MAP kinase activity, and only LPA-induced MAP kinase activation was sensitive to pertussis toxin. These results indicate that LPC-mediated PKC activation may be regulated by PTK-dependent activation of PLCγ-1, and both PKC and PTK-Ras pathways are involved in LPC-mediated downstream MAP kinase activation.


2001 ◽  
Vol 2 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Dietmar Böcker ◽  
Eugen J. Verspohl

MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [P32]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 (IC50=51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [H3]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genisteinsensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 1017-1025 ◽  
Author(s):  
M.H. Verlhac ◽  
J.Z. Kubiak ◽  
H.J. Clarke ◽  
B. Maro

Oocyte meiotic maturation is triggered by different stimuli (hormones, unknown signals through cell interactions) in different species. These stimuli indirectly lead to the activation of a major cell cycle regulating activity, the maturation promoting factor (MPF). Other factors, such as the product of the proto-oncogene c-mos or enzymes of the MAP kinase family, are also involved in the process of maturation. MAP kinase activation occurs during meiotic maturation in oocytes from different species with different kinetics. The relationships between MPF activation and MAP kinase activation have been well studied in species such as clam and Xenopus. In this paper, we study the precise timing of MAP kinase activation (as measured by phosphorylation of exogenous myelin basic protein and shifts in mobility of ERK 1 and ERK 2) versus MPF activation (as measured by phosphorylation of exogenous histone H1) during mouse oocyte maturation and, in parallel, morphological events such as changes in microtubule organization and chromatin condensation. We observed that MAP kinase activation was delayed after MPF activation and that this activity persisted throughout maturation whereas MPF activity dropped between the two meiotic metaphases. After parthenogenetic activation of ovulated eggs, MAP kinase inactivation was very slow compared to MPF inactivation. During the first mitotic cell cycle, a rise in myelin basic protein kinase activity at M-phase was observed but it was not related to MAP kinase activation. Furthermore, microtubules and chromatin remained in a metaphase-like state during the complete period of maturation (including the period between the two meiotic metaphases) and a few hours after activation.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document