Beta-cell markers and autoantigen expression by a human insulinoma cell line: similarities to native beta cells

1996 ◽  
Vol 150 (1) ◽  
pp. 113-120 ◽  
Author(s):  
M G Cavallo ◽  
F Dotta ◽  
L Monetini ◽  
S Dionisi ◽  
M Previti ◽  
...  

Abstract In the present study we have evaluated the expression of different beta-cell markers, islet molecules and autoantigens relevant in diabetes autoimmunity by a human insulinoma cell line (CM) in order to define its similarities with native beta cells and to discover whether it could be considered as a model for studies on immunological aspects of Type 1 diabetes. First, the positivity of the CM cell line for known markers of neuroendocrine derivation was determined by means of immunocytochemical analysis using different anti-islet monoclonal antibodies including A2B5 and 3G5 reacting with islet gangliosides, and HISL19 binding to an islet glycoprotein. Secondly, the expression and characteristics of glutamic acid decarboxylase (GAD) and of GM2-1 ganglioside, both known to be islet autoantigens in diabetes autoimmunity and expressed by human native beta cells, were investigated in the CM cell line. The pattern of ganglioside expression in comparison to that of native beta cells was also evaluated. Thirdly, the binding of diabetic sera to CM cells reacting with islet cytoplasmic antigens (ICA) was studied by immunohistochemistry. The results of this study showed that beta cell markers identified by anti-islet monoclonal antibodies A2B5, 3G5 and HISL-19 are expressed by CM cells; similarly, islet molecules such as GAD and GM2-1 ganglioside are present and possess similar characteristics to those found in native beta cells; the pattern of expression of other gangliosides by CM cells is also identical to human pancreatic islets; beta cell autoantigen(s) reacting with antibodies present in islet cell antibodies (ICA) positive diabetic sera identified by ICA binding are also detectable in this insulinoma cell line. We conclude that CM cells show close similarities to native beta cells with respect to the expression of neuroendocrine markers, relevant beta cell autoantigens in Type 1 diabetes (GAD, GM2-1, ICA antigen), and other gangliosides. Therefore, this insulinoma cell line may be considered as an ideal model for studies aimed at investigating autoimmune phenomena occurring in Type 1 diabetes. Journal of Endocrinology (1996) 150, 113–120

Autoimmunity ◽  
1999 ◽  
Vol 29 (3) ◽  
pp. 171-177 ◽  
Author(s):  
L. Monetini ◽  
M. g. Cavallo ◽  
F. Barone ◽  
L. Valente ◽  
M. Russo ◽  
...  

1999 ◽  
Vol 161 (1) ◽  
pp. 59-68 ◽  
Author(s):  
MG Baroni ◽  
MG Cavallo ◽  
M Mark ◽  
L Monetini ◽  
B Stoehrer ◽  
...  

Animal insulinoma cell lines are widely used to study physiological and pathophysiological mechanisms involved in glucose metabolism and to establish in vitro models for studies on beta-cells. In contrast, human insulinoma cell lines are rarely used because of difficulties in obtaining and culturing them for long periods. The aim of our study was to investigate, under different experimental conditions, the capacity of the human insulinoma cell line CM to retain beta-cell function, particularly the expression of constitutive beta-cell genes (insulin, the glucose transporters GLUT1 and GLUT2, glucokinase), intracellular and secreted insulin, beta-cell granules, and cAMP content. Results showed that CM cells from an early-passage express specific beta-cell genes in response to glucose stimulation, in particular the insulin and GLUT genes. Such capacity is lost at later passages when cells are cultured at standard glucose concentrations. However, if cultured at lower glucose concentration (0.8 mM) for a longer time, CM cells re-acquire the capacity to respond to glucose stimulation, as shown by the increased expression of beta-cell genes (insulin, GLUT2, glucokinase). Nonetheless, insulin secretion could not be restored under such experimental conditions despite the presence of intracellular insulin, although cAMP response to a potent activator of adenylate cyclase, forskolin, was present indicating a viable system. In conclusion, these data show that the human insulinoma cell line CM, at both early-passage and late-passage, posseses a functional glucose-signalling pathway and insulin mRNA expression similar to normal beta-cells, representing, therefore, a good model for studies concerning the signalling and expression of beta-cells. Furthermore, we have previously shown that it is also a good model for immunological studies. In this respect it is important to note that the CM cell line is one of the very few existing human beta-cell lines in long-term culture.


2003 ◽  
Vol 176 (1) ◽  
pp. 143-150 ◽  
Author(s):  
L Monetini ◽  
F Barone ◽  
L Stefanini ◽  
A Petrone ◽  
T Walk ◽  
...  

Enhanced cellular immune response to bovine beta-casein has been reported in patients with type 1 diabetes. In this study we aimed to establish beta-casein-specific T cell lines from newly diagnosed type 1 diabetic patients and to characterise these cell lines in terms of phenotype and epitope specificity. Furthermore, since sequence homologies exist between beta-casein and putative beta-cell autoantigens, reactivity to the latter was also investigated. T cell lines were generated from the peripheral blood of nine recent onset type 1 diabetic patients with different HLA-DQ and -DR genotypes, after stimulation with antigen pulsed autologous irradiated antigen presenting cells (APCs) and recombinant human interleukin-2 (rhIL-2). T cell line reactivity was evaluated in response to bovine beta-casein, to 18 overlapping peptides encompassing the whole sequence of beta-casein and to beta-cell antigens, including the human insulinoma cell line, CM, and a peptide from the beta-cell glucose transporter, GLUT-2. T cell lines specific to beta-casein could not be isolated from HLA-matched and -unmatched control subjects. beta-Casein T cell lines reacted to different sequences of the protein, however a higher frequency of T cell reactivity was observed towards the C-terminal portion (peptides B05-14, and B05-17 in 5/9 and 4/9 T cell lines respectively). Furthermore, we found that 1 out of 9 beta-casein-specific T cell lines reacted also to the homologous peptide from GLUT-2, and that 3 out of 4 of tested cell lines reacted also to extracts of the human insulinoma cell line, CM. We conclude that T cell lines specific to bovine beta-casein can be isolated from the peripheral blood of patients with type 1 diabetes; these cell lines react with multiple and different sequences of the protein particularly towards the C-terminal portion. In addition, reactivity of beta-casein T cell lines to human insulinoma extracts and GLUT-2 peptide was detected, suggesting that the potential cross-reactivity with beta-cell antigens deserves further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica R. Chaffey ◽  
Jay Young ◽  
Kaiyven A. Leslie ◽  
Katie Partridge ◽  
Pouria Akhbari ◽  
...  

AbstractThe generation of a human pancreatic beta cell line which reproduces the responses seen in primary beta cells, but is amenable to propagation in culture, has long been an important goal in diabetes research. This is particularly true for studies focussing on the role of enteroviral infection as a potential cause of beta-cell autoimmunity in type 1 diabetes. In the present work we made use of a clonal beta cell line (1.1B4) available from the European Collection of Authenticated Cell Cultures, which had been generated by the fusion of primary human beta-cells with a pancreatic ductal carcinoma cell, PANC-1. Our goal was to study the factors allowing the development and persistence of a chronic enteroviral infection in human beta-cells. Since PANC-1 cells have been reported to support persistent enteroviral infection, the hybrid 1.1B4 cells appeared to offer an ideal vehicle for our studies. In support of this, infection of the cells with a Coxsackie virus isolated originally from the pancreas of a child with type 1 diabetes, CVB4.E2, at a low multiplicity of infection, resulted in the development of a state of persistent infection. Investigation of the molecular mechanisms suggested that this response was facilitated by a number of unexpected outcomes including an apparent failure of the cells to up-regulate certain anti-viral response gene products in response to interferons. However, more detailed exploration revealed that this lack of response was restricted to molecular targets that were either activated by, or detected with, human-selective reagents. By contrast, and to our surprise, the cells were much more responsive to rodent-selective reagents. Using multiple approaches, we then established that populations of 1.1B4 cells are not homogeneous but that they contain a mixture of rodent and human cells. This was true both of our own cell stocks and those held by the European Collection of Authenticated Cell Cultures. In view of this unexpected finding, we developed a strategy to harvest, isolate and expand single cell clones from the heterogeneous population, which allowed us to establish colonies of 1.1B4 cells that were uniquely human (h1.1.B4). However, extensive analysis of the gene expression profiles, immunoreactive insulin content, regulated secretory pathways and the electrophysiological properties of these cells demonstrated that they did not retain the principal characteristics expected of human beta cells. Our data suggest that stocks of 1.1B4 cells should be evaluated carefully prior to their use as a model human beta-cell since they may not retain the phenotype expected of human beta-cells.


Author(s):  
Charanya Muralidharan ◽  
Amelia K Linnemann

Type 1 diabetes is an insulin-dependent, autoimmune disease where the pancreatic beta cells are destroyed resulting in hyperglycemia. This multi-factorial disease involves multiple environmental and genetic factors, and has no clear etiology. Accumulating evidence suggests that early signaling defects within the beta cells may promote a change in the local immune mileu, contributing to autoimmunity. Therefore, many studies have been focused on intrinsic beta cell mechanisms that aid in restoration of cellular homeostasis under environmental conditions that cause dysfunction. One of these intrinsic mechanisms to promote homeostasis is autophagy, defects in which are clearly linked with beta cell dysfunction in the context of type 2 diabetes. Recent studies have now also pointed towards beta cell autophagy defects in the context of type 1 diabetes. In this perspectives review, we will discuss the evidence supporting a role for beta cell autophagy in the pathogenesis of type 1 diabetes, including a potential role for unconventional secretion of autophagosomes/lysosomes in the changing dialogue between the beta cell and immune cells.


2021 ◽  
Author(s):  
Paola Benaglio ◽  
Han Zhu ◽  
Mei-Lin Okino ◽  
Jian Yan ◽  
Ruth Elgamal ◽  
...  

Beta cells intrinsically contribute to the pathogenesis of type 1 diabetes (T1D), but the genes and molecular processes that mediate beta cell survival in T1D remain largely unknown. We combined high throughput functional genomics and human genetics to identify T1D risk loci regulating genes affecting beta cell survival in response to the proinflammatory cytokines IL-1b, IFNg, and TNFa. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) active in beta cells using ATAC-seq and single nuclear ATAC-seq (snATAC-seq), and linked cytokine-responsive beta cell cCREs to putative target genes using single cell co-accessibility and HiChIP. We performed a genome-wide pooled CRISPR loss-of-function screen in EndoC-betaH1 cells, which identified 867 genes affecting cytokine-induced beta cell loss. Genes that promoted beta cell survival and had up-regulated expression in cytokine exposure were specifically enriched at T1D loci, and these genes were preferentially involved in inhibiting inflammatory response, ubiquitin-mediated proteolysis, mitophagy and autophagy. We identified 2,229 variants in cytokine-responsive beta cell cCREs altering transcription factor (TF) binding using high-throughput SNP-SELEX, and variants altering binding of TF families regulating stress, inflammation and apoptosis were broadly enriched for T1D association. Finally, through integration with genetic fine mapping, we annotated T1D loci regulating beta cell survival in cytokine exposure. At the 16p13 locus, a T1D variant affected TF binding in a cytokine-induced beta cell cCRE that physically interacted with the SOCS1 promoter, and increased SOCS1 activity promoted beta cell survival in cytokine exposure. Together our findings reveal processes and genes acting in beta cells during cytokine exposure that intrinsically modulate risk of T1D.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Clement Chan ◽  
Colin M. Hyslop ◽  
Vipul Shrivastava ◽  
Andrea Ochoa ◽  
Raylene A. Reimer ◽  
...  

Abstract In type 1 diabetes, restoration of normoglycemia can be achieved if the autoimmune attack on beta cells ceases and insulin requirement is met by the residual beta cells. We hypothesize that an adjunctive therapy that reduces insulin demand by increasing insulin sensitivity will improve the efficacy of an immunotherapy in reversing diabetes. We tested the gut microbiota-modulating prebiotic, oligofructose (OFS), as the adjunctive therapy. We treated non-obese diabetic mice with an immunotherapy, monoclonal anti-CD3 antibody (aCD3), with or without concurrent dietary supplement of OFS. After 8 weeks of OFS supplement, the group that received both aCD3 and OFS (aCD3 + OFS) had a higher diabetes remission rate than the group that received aCD3 alone. The aCD3 + OFS group had higher insulin sensitivity accompanied by reduced lymphocytic infiltrate into the pancreatic islets, higher beta-cell proliferation rate, higher pancreatic insulin content, and secreted more insulin in response to glucose. The addition of OFS also caused a change in gut microbiota, with a higher level of Bifidobacterium and lower Clostridium leptum. Hence, our results suggest that OFS can potentially be an effective therapeutic adjunct in the treatment of type 1 diabetes by improving insulin sensitivity and beta-cell function, leading to improved glycemic control.


2007 ◽  
Vol 8 (3) ◽  
pp. 232-238 ◽  
Author(s):  
R Bergholdt ◽  
A E Karlsen ◽  
P H Hagedorn ◽  
M Aalund ◽  
J H Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document