scholarly journals Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines

2021 ◽  
Author(s):  
Paola Benaglio ◽  
Han Zhu ◽  
Mei-Lin Okino ◽  
Jian Yan ◽  
Ruth Elgamal ◽  
...  

Beta cells intrinsically contribute to the pathogenesis of type 1 diabetes (T1D), but the genes and molecular processes that mediate beta cell survival in T1D remain largely unknown. We combined high throughput functional genomics and human genetics to identify T1D risk loci regulating genes affecting beta cell survival in response to the proinflammatory cytokines IL-1b, IFNg, and TNFa. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) active in beta cells using ATAC-seq and single nuclear ATAC-seq (snATAC-seq), and linked cytokine-responsive beta cell cCREs to putative target genes using single cell co-accessibility and HiChIP. We performed a genome-wide pooled CRISPR loss-of-function screen in EndoC-betaH1 cells, which identified 867 genes affecting cytokine-induced beta cell loss. Genes that promoted beta cell survival and had up-regulated expression in cytokine exposure were specifically enriched at T1D loci, and these genes were preferentially involved in inhibiting inflammatory response, ubiquitin-mediated proteolysis, mitophagy and autophagy. We identified 2,229 variants in cytokine-responsive beta cell cCREs altering transcription factor (TF) binding using high-throughput SNP-SELEX, and variants altering binding of TF families regulating stress, inflammation and apoptosis were broadly enriched for T1D association. Finally, through integration with genetic fine mapping, we annotated T1D loci regulating beta cell survival in cytokine exposure. At the 16p13 locus, a T1D variant affected TF binding in a cytokine-induced beta cell cCRE that physically interacted with the SOCS1 promoter, and increased SOCS1 activity promoted beta cell survival in cytokine exposure. Together our findings reveal processes and genes acting in beta cells during cytokine exposure that intrinsically modulate risk of T1D.

2008 ◽  
Vol 52 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Pierre Pirot ◽  
Alessandra K. Cardozo ◽  
Décio L. Eizirik

Type 1 diabetes mellitus (T1D) is characterized by severe insulin deficiency resulting from chronic and progressive destruction of pancreatic beta-cells by the immune system. The triggering of autoimmunity against the beta-cells is probably caused by environmental agent(s) acting in the context of a predisposing genetic background. Once activated, the immune cells invade the islets and mediate their deleterious effects on beta-cells via mechanisms such as Fas/FasL, perforin/granzyme, reactive oxygen and nitrogen species and pro-inflammatory cytokines. Binding of cytokines to their receptors on the beta-cells activates MAP-kinases and the transcription factors STAT-1 and NFkappa-B, provoking functional impairment, endoplasmic reticulum stress and ultimately apoptosis. This review discusses the potential mediators and mechanisms leading to beta-cell destruction in T1D.


2019 ◽  
Vol 317 (4) ◽  
pp. E723-E730 ◽  
Author(s):  
Guanlan Xu ◽  
Lance A. Thielen ◽  
Junqin Chen ◽  
Truman B. Grayson ◽  
Tiffany Grimes ◽  
...  

Pancreatic beta-cell death is a major factor in the pathogenesis of type 1 diabetes (T1D), but straightforward methods to measure beta-cell loss in humans are lacking, underlining the need for novel biomarkers. Using studies in INS-1 cells, human islets, diabetic mice, and serum samples of subjects with T1D at different stages, we have identified serum miR-204 as an early biomarker of T1D-associated beta-cell loss in humans. MiR-204 is a highly enriched microRNA in human beta-cells, and we found that it is released from dying beta-cells and detectable in human serum. We further discovered that serum miR-204 was elevated in children and adults with T1D and in autoantibody-positive at-risk subjects but not in type 2 diabetes or other autoimmune diseases and was inversely correlated with remaining beta-cell function in recent-onset T1D. Thus, serum miR-204 may provide a much needed novel approach to assess early T1D-associated human beta-cell loss even before onset of overt disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Teresa Rodriguez-Calvo ◽  
James D. Johnson ◽  
Lut Overbergh ◽  
Jessica L. Dunne

The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.


2019 ◽  
Vol 63 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Fabio Arturo Grieco ◽  
Andrea Alex Schiavo ◽  
Flora Brozzi ◽  
Jonas Juan-Mateu ◽  
Marco Bugliani ◽  
...  

miRNAs are a class of small non-coding RNAs that regulate gene expression. Type 1 diabetes is an autoimmune disease characterized by insulitis (islets inflammation) and pancreatic beta cell destruction. The pro-inflammatory cytokines interleukin 1 beta (IL1B) and interferon gamma (IFNG) are released during insulitis and trigger endoplasmic reticulum (ER) stress and expression of pro-apoptotic members of the BCL2 protein family in beta cells, thus contributing to their death. The nature of miRNAs that regulate ER stress and beta cell apoptosis remains to be elucidated. We have performed a global miRNA expression profile on cytokine-treated human islets and observed a marked downregulation of miR-211-5p. By real-time PCR and Western blot analysis, we confirmed cytokine-induced changes in the expression of miR-211-5p and the closely related miR-204-5p and downstream ER stress related genes in human beta cells. Blocking of endogenous miRNA-211-5p and miR-204-5p by the same inhibitor (it is not possible to block separately these two miRs) increased human beta cell apoptosis, as measured by Hoechst/propidium Iodide staining and by determination of cleaved caspase-3 activation. Interestingly, miRs-211-5p and 204-5p regulate the expression of several ER stress markers downstream of PERK, particularly the pro-apoptotic protein DDIT3 (also known as CHOP). Blocking CHOP expression by a specific siRNA partially prevented the increased apoptosis observed following miR-211-5p/miR-204-5p inhibition. These observations identify a novel crosstalk between miRNAs, ER stress and beta cell apoptosis in early type 1 diabetes.


2005 ◽  
Vol 34 (2) ◽  
pp. 367-376 ◽  
Author(s):  
E Anastasi ◽  
C Santangelo ◽  
A Bulotta ◽  
F Dotta ◽  
B Argenti ◽  
...  

The elucidation of mechanisms regulating the regeneration and survival of pancreatic beta cells has fundamental implications in the cell therapy of type 1 diabetes. The present study had the following three aims: 1. to investigate whether pancreatic ductal epithelial cells can be induced to differentiate into insulin-producing cells by exposing them to hepatocyte growth factor (HGF); 2. to characterize some of the molecular events leading to their differentiation toward a beta-cell-like phenotype; 3. to evaluate the susceptibility of newly differentiated insulin-secreting cells to cytokine-induced apoptosis, a mechanism of beta-cell destruction occurring in type 1 diabetes. We demonstrated that HGF-treated rat pancreatic ductal cell line (ARIP) cells acquired the capability to transcribe the insulin gene and translate its counterpart protein. HGF-treated cells also exhibited a glucose-dependent capability to secrete insulin into the cultured medium. Expression analysis of some of the genes regulating pancreatic beta-cell differentiation revealed a time-dependent transcription of neurogenin-3 and Neuro-D in response to HGF. Finally, we determined the susceptibility to proinflammatory cytokine (PTh1)-induced apoptosis by incubating HGF-treated and untreated ARIP cells with a cocktail of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). Such treatment induced apoptotic death, as determined by the TUNEL technique, in about 40% of HGF-treated, insulin-secreting ARIP cells, while untreated ARIP cells were resistant to PTh1-induced apoptosis. In conclusion, we showed that HGF promotes the differentiation of ARIP cells into pancreatic beta-cell-like cells, and that the differentiation toward an insulin-secreting phenotype is associated with the appearance of susceptibility to cytokine-induced apoptosis.


1996 ◽  
Vol 150 (1) ◽  
pp. 113-120 ◽  
Author(s):  
M G Cavallo ◽  
F Dotta ◽  
L Monetini ◽  
S Dionisi ◽  
M Previti ◽  
...  

Abstract In the present study we have evaluated the expression of different beta-cell markers, islet molecules and autoantigens relevant in diabetes autoimmunity by a human insulinoma cell line (CM) in order to define its similarities with native beta cells and to discover whether it could be considered as a model for studies on immunological aspects of Type 1 diabetes. First, the positivity of the CM cell line for known markers of neuroendocrine derivation was determined by means of immunocytochemical analysis using different anti-islet monoclonal antibodies including A2B5 and 3G5 reacting with islet gangliosides, and HISL19 binding to an islet glycoprotein. Secondly, the expression and characteristics of glutamic acid decarboxylase (GAD) and of GM2-1 ganglioside, both known to be islet autoantigens in diabetes autoimmunity and expressed by human native beta cells, were investigated in the CM cell line. The pattern of ganglioside expression in comparison to that of native beta cells was also evaluated. Thirdly, the binding of diabetic sera to CM cells reacting with islet cytoplasmic antigens (ICA) was studied by immunohistochemistry. The results of this study showed that beta cell markers identified by anti-islet monoclonal antibodies A2B5, 3G5 and HISL-19 are expressed by CM cells; similarly, islet molecules such as GAD and GM2-1 ganglioside are present and possess similar characteristics to those found in native beta cells; the pattern of expression of other gangliosides by CM cells is also identical to human pancreatic islets; beta cell autoantigen(s) reacting with antibodies present in islet cell antibodies (ICA) positive diabetic sera identified by ICA binding are also detectable in this insulinoma cell line. We conclude that CM cells show close similarities to native beta cells with respect to the expression of neuroendocrine markers, relevant beta cell autoantigens in Type 1 diabetes (GAD, GM2-1, ICA antigen), and other gangliosides. Therefore, this insulinoma cell line may be considered as an ideal model for studies aimed at investigating autoimmune phenomena occurring in Type 1 diabetes. Journal of Endocrinology (1996) 150, 113–120


Diabetologia ◽  
2016 ◽  
Vol 60 (3) ◽  
pp. 464-474 ◽  
Author(s):  
Xue Jiang ◽  
Yawen Zhou ◽  
Kelvin K. L. Wu ◽  
Zhanrui Chen ◽  
Aimin Xu ◽  
...  

APOPTOSIS ◽  
2008 ◽  
Vol 13 (8) ◽  
pp. 959-971 ◽  
Author(s):  
Ru-Jiang Li ◽  
Shu-Dong Qiu ◽  
Hai-Xu Wang ◽  
Hong Tian ◽  
Li-Rong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document