Differential regulation of tissue insulin-like growth factor-binding protein (IGFBP)-3, IGF-I and IGF type 1 receptor mRNA levels, and serum IGF-I and IGFBP concentrations by growth hormone and IGF-I

1997 ◽  
Vol 154 (2) ◽  
pp. 319-328 ◽  
Author(s):  
A B Lemmey ◽  
J Glassford ◽  
H C Flick-Smith ◽  
J M P Holly ◽  
J M Pell

Abstract The aims of this investigation were (1) to examine IGF-binding protein-3 (IGFBP-3) mRNA levels in candidate tissues which might be important sources for blood IGFBP-3 (liver and skin) and in a target tissue for IGF-I action (skeletal muscle), and (2) to examine the effects of a single dose (500 μg) of GH or IGF-I on IGFBP-3 message levels in these tissues since temporal responses (4, 8 and 24 h after the single subcutaneous dose of peptide to GH-deficient dwarf rats) would indicate which peptide is the primary modulator of IGFBP-3 synthesis. Circulating IGF-I and IGFBP-3 concentrations were significantly increased (P<0·05) by IGF-I and GH. GH treatment increased liver IGFBP-3 mRNA levels by 4 h (P<0·001 over the 24 h) whereas IGF-I had no effect. Similarly, GH, but not IGF-I, increased muscle IGFBP-3 mRNA levels (P<0·001 for the 24 h study period). However, both IGF-I and GH induced increases in skin IGFBP-3 mRNA abundance throughout the 24 h period (P<0·001 and P<0·01 respectively) and skin IGFBP-3 message abundance was greater that in the liver. Liver IGF-I mRNA levels were, as expected, increased after GH and tended to decrease after IGF-I treatment; muscle IGF-I mRNA was increased by GH (P<0·001) and, interestingly, progressively increased by IGF-I (P<0·05 for the 24 h period); skin IGF-I mRNA levels were unchanged by both peptides. The IGF-I induced increase in serum IGFBP-3 concentrations in the absence of an increase in hepatic IGFBP-3 mRNA levels and a paucity of liver IGF-I type 1 receptor mRNA imply that other sources of IGFBP-3 protein or synthesis must exist. The response of skin IGFBP-3 mRNA levels to both GH and IGF-I suggests that other cell types, such as fibroblast-derived cells, could be more important than the liver in the regulation of circulating reservoir IGFBP-3 in certain circumstances. In contrast to some current suggestions, the rapid and consistent GH-induced increase in IGFBP-3 message levels in all tissues studied implies that GH might have a direct function in the regulation of IGFBP-3 synthesis. Journal of Endocrinology (1997) 154, 319–328

1999 ◽  
Vol 22 (3) ◽  
pp. 261-272 ◽  
Author(s):  
V Dunaiski ◽  
FR Dunshea ◽  
PE Walton ◽  
C Goddard

The effect of short-term GH treatment on steady-state insulin-like growth factor binding protein-3 (IGFBP-3) mRNA levels in liver, kidney, longissimus dorsi muscle, stomach and jejunum was examined in pigs. Ten female crossbred pigs were allocated to either saline or GH (70 microg/kg/day) treatment by subcutaneous injection for 4 days. They were allowed to feed ad libitum, and were weighed daily. At the end of the treatment period, the pigs were slaughtered and samples of liver, kidney, skeletal muscle, stomach and jejunum were collected and total RNA was extracted. Steady-state levels of IGFBP-3 mRNA were quantified by RNase protection assay and were compared with the level of IGF-I class 1 and class 2 transcripts. IGFBP-3 mRNA increased in response to GH in both liver and kidney, but not in the other tissues sampled. Hepatic IGF-I mRNA responded to short-term GH treatment with a fourfold increase in IGF-I class 1 mRNA and an eightfold increase in IGF-I class 2 mRNA, which was liver specific. IGF-I class 1 mRNA was not responsive to GH treatment in other tissues. The short-term nature of this treatment suggests that the increase in hepatic IGFBP-3 and IGF-I transcripts is a relatively early response to treatment with GH, and that the increase in plasma concentrations of IGFBP-3 in response to GH are derived from the liver, the kidney, or both.


2000 ◽  
Vol 167 (2) ◽  
pp. 295-303 ◽  
Author(s):  
JW van Neck ◽  
NF Dits ◽  
V Cingel ◽  
IA Hoppenbrouwers ◽  
SL Drop ◽  
...  

The effects of growth hormone (GH) in regulating the expression of the hepatic and renal GH and insulin-like growth factor (IGF) system were studied by administering a novel GH receptor antagonist (GHRA) (B2036-PEG) at different doses (0, 1.25, 2.5, 5 and 10 mg/kg/day) to mice for 7 days. No differences were observed in the groups with respect to body weight, food consumption or blood glucose. However, a dose-dependent decrease was observed in circulating IGF-I levels and in hepatic and renal IGF-I levels at the highest doses. In contrast, in the 5 and 10 mg/kg/day GHRA groups, circulating and hepatic transcriptional IGF binding protein-3 (IGFBP-3) levels were not modified, likely resulting in a significantly decreased IGF-I/IGFBP-3 ratio. Hepatic GH receptor (GHR) and GH binding protein (GHBP) mRNA levels increased significantly in all GHRA dosage groups. Endogenous circulatory GH levels increased significantly in the 2.5 and 5 mg/kg/day GHRA groups. Remarkably, increased circulating IGFBP-4 and hepatic IGFBP-4 mRNA levels were observed in all GHRA administration groups. Renal GHR and GHBP mRNA levels were not modified by GHRA administration at the highest doses. Also, renal IGFBP-3 mRNA levels remained unchanged in most GHRA administration groups, whereas IGFBP-1, -4 and -5 mRNA levels were significantly increased in the 5 and 10 mg/kg/day GHRA administration groups. In conclusion, the effects of a specific GHR blockade on circulating, hepatic and renal GH/IGF axis reported here, may prove useful in the future clinical use of GHRAs.


1998 ◽  
Vol 157 (1) ◽  
pp. 13-24 ◽  
Author(s):  
M Tucci ◽  
K Nygard ◽  
BV Tanswell ◽  
HW Farber ◽  
DJ Hill ◽  
...  

Endothelial cells (EC) are hypoxia-tolerant and their capacity to proliferate in low oxygen tension is essential to maintain vascular endothelium integrity. The present study addresses whether hypoxia alters the expression of insulin-like growth factor (IGF) and IGF binding protein (IGFBP) genes in bovine aortic EC (BAEC) and bovine pulmonary artery EC (BPAEC). EC were cultured in normoxic (21%) conditions and exposed to 0% oxygen for 24, 48, or 72 h; some cells were reoxygenated by exposure to 21% oxygen for 24 or 48 h following hypoxia. IGF-I peptide and mRNA levels were very low in both cell types, and decreased further with exposure to hypoxia. Ligand blotting showed that both cell types synthesized 24 kDa (IGFBP-4), 30 kDa (IGFBP-5 and/or IGFBP-6), 43 kDa and 48 kDa IGFBPs (IGFBP-3 glycosylation variants). IGFBP-4 was the predominant IGFBP expressed by both cell types and did not change with exposure to hypoxia. Hypoxia caused a significant increase in IGFBP-3 secretion in BPAEC but not in BAEC. IGFBP-3 stable mRNA levels in BPAEC were increased correspondingly. IGFBP-5 was expressed only in BAEC and decreased with exposure to hypoxia. IGFBP-6 mRNA expression was low and increased in both cell types with exposure to hypoxia. These results demonstrate that EC IGFBP baseline expression as well as its expression in hypoxia vary in different vascular beds and suggest that the IGFBPs may be the dominant paracrine regulators of proliferation of EC as well as maintenance of endothelium integrity during hypoxia.


2002 ◽  
Vol 283 (5) ◽  
pp. E937-E945 ◽  
Author(s):  
Josef V. Silha ◽  
Yaoting Gui ◽  
Liam J. Murphy

Glucose homeostasis was examined in male transgenic (Tg) mice that overexpressed the human insulin-like growth factor (IGF)-binding protein (IGFBP)-3 cDNA, driven by either the cytomegalovirus (CMV) or the phosphoglycerate kinase (PGK) promoter. The Tg mice of both lineages demonstrated increased serum levels of human (h) IGFBP-3 and total IGF-I compared with wild-type (Wt) mice. Fasting blood glucose levels were significantly elevated in 8-wk-old CMV-binding protein (CMVBP)-3- and PGK binding protein (PGKBP)-3-Tg mice compared with Wt mice: 6.35 ± 0.22 and 5.22 ± 0.39 vs. 3.99 ± 0.26 mmol/l, respectively. Plasma insulin was significantly elevated only in CMVBP-3-Tg mice. The responses to a glucose challenge were significantly increased in both Tg strains: area under the glucose curve = 1,824 ± 65 and 1,910 ± 115 vs. 1,590 ± 67 mmol · l−1 · min for CMVBP-3, PGKBP-3, and Wt mice, respectively. The hypoglycemic effects of insulin and IGF-I were significantly attenuated in Tg mice compared with Wt mice. There were no differences in adipose tissue resistin, retinoid X receptor-α, or peroxisome proliferator-activated receptor-γ mRNA levels between Tg and Wt mice. Uptake of 2-deoxyglucose was reduced in muscle and adipose tissue from Tg mice compared with Wt mice. These data demonstrate that overexpression of hIGFBP-3 results in fasting hyperglycemia, impaired glucose tolerance, and insulin resistance.


1993 ◽  
Vol 138 (3) ◽  
pp. 421-427 ◽  
Author(s):  
I. J. Clarke ◽  
T. P. Fletcher ◽  
C. C. Pomares ◽  
J. H. G. Holmes ◽  
F. Dunshea ◽  
...  

ABSTRACT Three groups of mature rams were maintained on diets of hay, hay+2% lupin or hay+2% cowpea for 11 weeks. Serial blood samples were taken at 15-min intervals for 12 h for the determination of GH and IGF-I content by radioimmunoassay and for IGF-binding protein-3 (IGFBP-3) levels by Western blotting. The rams were killed after 77 days of supplementary feeding and their pituitary glands analysed for content of GH and GH mRNA. Mean plasma GH and baseline GH levels were significantly (P<0·01) decreased in the rams fed lupin and cowpea compared with controls fed hay and GH pulse amplitude was significantly (P<0·001) decreased in the group fed the cowpea diet. The frequency of GH pulses was not significantly altered by either treatment. Plasma concentrations of IGF-I were elevated in rams fed lupin (P<0·001) or cowpea (P<0·05). IGFBP-3 levels were not significantly (P>0·05) altered by either treatment. There were no significant differences in pituitary content of GH mRNA but pituitary content of GH was increased in rams fed lupin (P<0·05) and cowpea (P=0·07). In conclusion, a high-protein diet decreases plasma GH levels and increases IGF-I without changing plasma IGFBP-3 levels in rams. Thus ongoing synthesis of GH, as indicated by the mRNA levels, may cause a build up of GH stores in the pituitary gland. Journal of Endocrinology (1993) 138, 421–427


Bone ◽  
1995 ◽  
Vol 17 (6) ◽  
pp. 572
Author(s):  
Ch. Schmid ◽  
I. Schäpfer ◽  
Ch. Veldman ◽  
M. Böni-Schnetzler ◽  
J. Zapf ◽  
...  

1999 ◽  
Vol 23 (2) ◽  
pp. 209-221 ◽  
Author(s):  
A Zung ◽  
M Phillip ◽  
SA Chalew ◽  
T Palese ◽  
AA Kowarski ◽  
...  

Several studies have suggested that testosterone may have a direct, GH-independent effect on growth. In order to assess possible mechanism(s) whereby testosterone exerts its growth-promoting effect, we evaluated its effect on growth mediators of the GH-IGF-I axis, in both the liver and the epiphyseal growth plate (EGP). Testosterone was administered to peripubertal rats and the responses of mRNA of GH receptor, IGF-I, IGF-I receptor and IGF-binding proteins-1 and -3 (IGFBP-1 and IGFBP-3) as well as circulating IGF-I were evaluated in two time-related models: over 12 h after a single injection (short-term study) and 10 days after continuous administration (long-term study). Rats in the short-term study were castrated and were killed 1, 4, 6 and 12 h post injection. Rats in the long-term study were divided into two groups: castrated vs castrated and hypophysectomized, in order to assess the effect of testosterone in the presence and absence of GH. mRNA levels were determined by RNase protection assay, and serum IGF-I by RIA. Testosterone enhanced weight gain in the rats treated for 10 days, a change that was similar in the presence or absence of GH. This effect was relatively small, however, by comparison with the total weight gained without testosterone. Testosterone had no effect on hepatic IGF-I mRNA abundance but induced a reduction in circulating IGF-I levels, in both the short- and long-term study. Testosterone had no effect on hepatic GH receptor and IGFBP-3 mRNA levels but resulted in a transient, short-term elevation in IGFBP-1 mRNA levels that was maximal 4 h post injection.In the EGP, neither testosterone administration nor hypophysectomy had any effect on IGF-I and IGF-I receptor mRNA levels. However, testosterone increased GH receptor mRNA abundance after 10 days of continuous administration in hypophysectomized rats only.These data suggest that the effect of testosterone on growth (as assessed by weight gain) is small and is not mediated by changes in hepatic gene expression of IGF-I, IGF-I receptor, IGFBP-1, IGFBP-3 or circulating IGF-I. At the EGP, the testosterone effect on linear growth is not mediated through changes in mRNA abundance of IGF-I and IGF-I receptor. The small but significant elevation of GH receptor mRNA levels in hypophysectomized rats may suggest a testosterone-mediated augmentation of a GH effect at the target organ.


2005 ◽  
Vol 186 (1) ◽  
pp. 165-178 ◽  
Author(s):  
J M Fleming ◽  
B J Leibowitz ◽  
D E Kerr ◽  
W S Cohick

Elucidating how mitogens facilitate epithelial/stromal interactions is critical given that mitogens regulate mammary gland development and function. IGF-I is a potent mammary cell mitogen that is locally produced in the mammary gland. Since IGF-binding proteins (IGFBPs) regulate IGF-I bioavailability, we characterized the cell-type-specific production of IGFBP in primary bovine mammary epithelial (BME) and fibroblast (BMF) cells. Cells were treated with IGF-I and mRNA levels were analyzed via quantitative real-time (qRT)-PCR and Northern blot analysis. Media conditioned by cells treated with IGF-I for 48 h were analyzed via ligand blotting with 125I-labeled IGF-I and -II and immunoblotting with specific IGFBP antibodies. A reciprocal regulation of IGFBP-3 and -5 by IGF-I was observed between the two cell types. IGF-I induced large dose-dependent increases in IGFBP-3 mRNA and protein levels in BME cells, while IGFBP-5 protein was barely detectable and mRNA levels were detectable only by qRT-PCR. In BMFs, IGF-I induced large increases in IGFBP-5 mRNA and protein while IGFBP-3 mRNA was only slightly increased by IGF-I treatment and the protein was difficult to detect. IGFBP-6 mRNA was detected by Northern blot analysis in both cell types but was not regulated by IGF-I. In BME cells, IGFBP-6 protein levels were readily detectable under basal conditions and were increased by IGF-I. Interestingly, IGFBP-6 protein could not be detected in media conditioned by BMFs. IGFBP-4 mRNA was readily seen by Northern blot analysis in BMFs, however qRT-PCR was required to detect IGFBP-4 mRNA in BME cells. IGF-I increased IGFBP-4 mRNA levels by 2-fold in both cell types. IGFBP-4 protein was only detectable in media conditioned by BME cells when stimulated by IGF-I. In contrast, IGFBP-4 was present in media conditioned by untreated BMFs but was not consistently increased by IGF-I treatment. This was explained by the finding that IGF-I stimulated proteolysis of IGFBP-4, as evidenced by the appearance of two immuno-responsive fragments of 18 and 14 kDa. This proteolysis was specific to IGFBP-4, and was not observed in BME cells. We confirmed the protease to be pregnancy-associated plasma protein A (PAPP-A) by immunoblotting with an antibody against human PAPP-A/proMBP (pro form of eosinophil major basic protein) complex. In vitro immuno-neutralization experiments showed that blocking PAPP-A prevented the ability of IGF-I to stimulate IGFBP-4 proteolysis. IGFBP-2 mRNA and protein levels were observed under basal conditions in both cell types, with no significant regulation by IGF-I. The analysis of cell-type-specific regulation of the IGF system in both primary mammary epithelial cells and stromal cells will assist in the characterization of the mechanisms behind the role of the IGF system in normal mammary physiology and ultimately breast cancer.


1997 ◽  
Vol 155 (1) ◽  
pp. 19-26 ◽  
Author(s):  
S Combes ◽  
I Louveau ◽  
M Bonneau

The present study was undertaken to determine the effect of GH administration on GH and IGF-I receptors in skeletal muscle compared with liver in growing pigs. Plasma IGF-I and GH-binding protein (GHBP) levels were also determined. Twelve Large White pigs (castrated males) were treated daily with 100 micrograms pituitary porcine GH (pGH) per kg body weight or vehicle for 41 days intramuscularly. Relative to controls, pGH administration increased plasma IGF-I concentrations by 3.3-fold. Administration of pGH had no effect on plasma GHBP levels. In liver, 125I-labelled bovine GH (bGH)-specific binding (P < 0.05) and GH receptor (GHR) mRNA levels (P < 0.05) were higher in pGH-treated than in control pigs. In longissimus dorsi (LD), 125I-labelled bGH specific binding did not differ significantly between the two groups while GHR mRNA levels (P < 0.05) were lower in pGH-treated than in control pigs. Administration of pGH had no effect on 125I-labelled bGH-specific binding and GHR mRNA levels in trapezius (TR). 125I-Labelled IGF-I-specific binding in liver was unaffected by pGH administration. Similarly, in liver, LD and TR, IGF-I receptor mRNA levels were not different between pGH-treated and control animals. It can be concluded that (1) GH binding and IGF-I receptor mRNA are not affected by GH in skeletal muscle, (2) GH influences GHR in a tissue-specific manner and (3) hepatic GHR and GHBP levels are not co-regulated.


1998 ◽  
Vol 48 (5) ◽  
pp. 641-646 ◽  
Author(s):  
L. C. K. Low ◽  
M. C. Postel-Vinay ◽  
E. Y. W. Kwan ◽  
P. T. Cheung

Sign in / Sign up

Export Citation Format

Share Document