scholarly journals Metabolic hormones modulate the effect of growth hormone (GH) on insulin-like growth factor-I (IGF-I) mRNA level in primary culture of salmon hepatocytes

2005 ◽  
Vol 184 (2) ◽  
pp. 341-349 ◽  
Author(s):  
A L Pierce ◽  
H Fukada ◽  
W W Dickhoff

Liver production of insulin-like growth factor-I (IGF-I) is a major point of control in the growth hormone (GH)/IGF axis, the endocrine system regulating body growth in fishes and other vertebrates. Pituitary GH stimulates hepatocyte production of IGF-I; however, in catabolic states, hepatocyte GH resistance results in decreases in liver IGF-I production. To investigate endocrine mechanisms leading to the development of hepatocyte GH resistance, we examined the regulation of IGF-I mRNA level by GH and metabolic hormones in primary culture of salmon hepatocytes. Cells were cultured in RPMI medium, and exposed to insulin (Ins, 10−6 M), glucagon (Glu, 10−6 M), triiodothyronine (T3, 10−7 M), dexamethasone (Dex, 10−6 M) and glucagon-like peptide (GLP, 10−6 M), in the presence and absence of GH (5×10−9 M). GH always increased IGF-I mRNA. None of the other hormones tested alone affected IGF-I mRNA. However, Dex, Ins and Glu reduced the response to GH. The response to GH was inhibited by Dex at concentrations of 10−12 M and above, by Ins at 10−9 M and above, and by Glu only at 10−6 M. Inhibition of GH response by glucocorticoids is found in other vertebrates. Salmon hepatocytes were very sensitive to Dex, suggesting that glucocorticoids may play an important role in salmon growth regulation even in unstressed conditions. Inhibition of GH response by Ins is the opposite of what is found in mammals and chickens, suggesting that the role of Ins in growth regulation may differ between fishes and tetrapods. To examine mechanisms for modulation of GH sensitivity, we measured hepatocyte GH receptor (GHR) mRNA levels. Ins inhibited and Dex stimulated GHR mRNA, suggesting that different mechanisms mediate the inhibition of GH response by these hormones. This study shows that glucocorticoids, Ins, and Glu induce GH resistance in cultured salmon hepatocytes.

1991 ◽  
Vol 124 (5) ◽  
pp. 602-607 ◽  
Author(s):  
Ben A. A. Scheven ◽  
Nicola J. Hamilton

Abstract. Longitudinal growth was studied using an in vitro model system of intact rat long bones. Metatarsal bones from 18- and 19-day-old rat fetuses, entirely (18 days) or mainly (19 days) composed of chondrocytes, showed a steady rate of growth and radiolabelled thymidine incorporation for at least 7 days in serum-free media. Addition of recombinant human insulin-like growth factor-I to the culture media resulted in a direct stimulation of the longitudinal growth. Recombinant human growth hormone was also able to stimulate bone growth, although this was generally accomplished after a time lag of more than 2 days. A monoclonal antibody to IGF-I abolished both the IGF-I and GH-stimulated growth. However, the antibody had no effect on the growth of the bone explants in control, serum-free medium. Unlike the fetal long bones, bones from 2-day-old neonatal rats were arrested in their growth after 1-2 days in vitro. The neonatal bones responded to IGF-I and GH in a similar fashion as the fetal bones. Thus in this study in vitro evidence of a direct effect of GH on long bone growth via stimulating local production of IGF by the growth plate chondrocytes is presented. Furthermore, endogenous growth factors, others than IGFs, appear to play a crucial role in the regulation of fetal long bone growth.


1999 ◽  
Vol 81 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Myriam Sanchez-Gomez ◽  
Kjell Malmlöf ◽  
Wilson Mejia ◽  
Antonio Bermudez ◽  
Maria Teresa Ochoa ◽  
...  

The aim of the present study was to investigate the influence of dietary protein level on the protein anabolic effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I). Female growing rats were fed on either a high- or a low-protein diet with crude protein contents of 222 and 83 g/kg respectively. The diets contained the same amount of metabolizable energy (15·1 MJ/kg) and were given during a 14 d period. During the same time, three groups of rats (n 8) on each diet received subcutaneous infusions of either saline, recombinant human GH (rhGH) or recombinant human IGF-I (rhIGF-I). rhGH and rhIGF-I were given in doses of 360 and 500 μg/d respectively. The low-protein diet alone reduced significantly (P < 0·05) IGF-I concentrations in serum and in tissue taken from the gastrocnemius muscle as well as IGF-I mRNA from the same muscle. The responses to rhGH and rhIGF-I in terms of muscle IGF-I and its mRNA were variable. However, when rhIGF-I was infused into rats on the high-protein diet, significantly elevated levels of IGF-I in muscle tissues could be observed. This was associated with a significantly (P < 0·05) increased N balance, whereas rhGH significantly (P < 0·05) enhanced the N balance in rats on the low-protein diet. Thus, it can be concluded that the level of dietary protein ingested regulates not only the effect of IGF-I on whole-body N economy but also the regulation of IGF-I gene expression in muscles. The exact mechanism by which GH exerts its protein anabolic effect, however, remains to be elucidated.


1997 ◽  
Vol 82 (4) ◽  
pp. 1064-1070 ◽  
Author(s):  
Michael I. Lewis ◽  
Thomas J. Lorusso ◽  
Mario Fournier

Lewis, Michael I., Thomas J. LoRusso, and Mario Fournier.Effect of insulin-like growth factor I and/or growth hormone on diaphragm of malnourished adolescent rats. J. Appl. Physiol. 82(4): 1064–1070, 1997.—Young growing animals appear to have significantly reduced “nutritional reserve” to short periods of unstressed starvation compared with adults, with resultant growth arrest and/or atrophy of diaphragm (Dia) muscle fibers. The aim of this study was to assess in an adolescent rat model of acute nutritional deprivation (ND; 72 h) the impact of insulin-like growth factor I (IGF-I), with or without added growth hormone (GH), on the cross-sectional areas (CSA) of individual Dia muscle fibers. Five groups were studied: 1) control (Ctr); 2) ND; 3) ND given IGF-I (ND/IGF-I); 4) ND given GH (ND/GH); and 5) ND given a combination of IGF-I and GH (ND/IGF-I/GH). IGF-I was given by a subcutaneously implanted osmotic minipump (200 μg/day), whereas GH was administered twice daily by a subcutaneous injection (250 μg every 12 h). Isometric contractile and fatigue properties of the Dia were determined in vitro. Forces were normalized for muscle CSA (i.e., specific force). Dia fiber type proportions were determined histochemically, and fiber CSA was quantified by using a computer-based image-processing system. Total serum IGF-I concentrations were significantly reduced in ND and ND/GH animals, compared with Ctr, and elevated in the groups receiving IGF-I. The provision of growth factors did not alter the contractile or fatigue properties of ND animals. Dia fiber type proportions were similar among the groups. In ND animals, there was a significant reduction in the CSA of types I, IIa, IIx, and IIc Dia fibers compared with Ctr. The administration of IGF-I alone or in combination with GH to ND animals significantly diminished the reduction in Dia fiber size. GH alone had no effect on Dia fiber size in ND animals. We conclude that with acute ND the peripheral resistance to the action of GH appears to be bypassed by the administration of IGF-I alone or in combination with GH.


1994 ◽  
Vol 267 (2) ◽  
pp. E331-E336 ◽  
Author(s):  
D. A. Fryburg

The effect of a 6-h intra-arterial infusion of recombinant human (rh) insulin-like growth factor I (IGF-I) on forearm muscle metabolism was studied in 19 postabsorptive subjects. Forearm glucose, lactate, and phenylalanine (Phe) balances, as well as estimates of protein degradation (Phe Ra) and synthesis (Phe Rd) were measured before and at 3 and 6 h into an infusion of rhIGF-I at a dose of 1.8 (n = 6), 6.0 (n = 8), or 10.0 (n = 5) micrograms.kg-1.h-1. In response to intra-arterial IGF-I, deep venous IGF-I rose by 55, 141, and 315%, respectively (all P < 0.01), and forearm blood flow accelerated by 75 (1.8 microgram), 213 (6.0 micrograms), and 159% (10.0 micrograms; all P < 0.02). No change in forearm glucose uptake was observed at the lowest dose, whereas four- to sixfold increases were observed at both the 6 and 10 micrograms.kg-1.h-1 doses (both P < 0.02). Forearm Phe balance shifted positively at all three doses by 27 +/- 6, 48 +/- 7, and 51 +/- 9 nmol.min-1 x 100 ml-1, respectively (all P < 0.01). At all three doses, Phe Rd increased comparably by 49-74% (all P < 0.05). At the 6.0 and 10.0 but not the 1.8 microgram.kg-1.h-1 dose, Phe Ra decreased by approximately 45% (P < 0.02). Forearm muscle metabolism was also studied in the contralateral non-IGF-infused arm at these three doses. Despite increases in deep venous IGF-I up to 517 ng/ml due to recirculating IGF-I (10.0 micrograms.kg-1.h-1 dose), contralateral forearm muscle glucose, lactate, or Phe handling did not change. In conclusion, intra-arterial IGF-I exhibits growth hormone-like effects at all doses tested, whereas the insulin-like effects are observed at higher doses; these effects appear dependent on the route of administration.


Sign in / Sign up

Export Citation Format

Share Document