scholarly journals Skeletal muscle glucose transporter protein responses to antenatal glucocorticoids in the ovine fetus

2006 ◽  
Vol 189 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Susan Gray ◽  
Barbara S Stonestreet ◽  
Shanthie Thamotharan ◽  
Grazyna B Sadowska ◽  
Molly Daood ◽  
...  

We investigated the effects of maternal antenatal dexamethasone (Dex) treatment given as a single course (4 doses) or multiple courses (20 doses) on fetal skeletal muscle glucose transporter (GLUT) protein concentrations at 70% of gestation (106 to 107 days with term being 145 to 150 days) in the ovine fetus. Antenatal corticosteroid administration was associated with a decrease in endogenous fetal plasma cortisol concentrations (P < 0.05), fetal hyperglycemia (P < 0.02) and hyperinsulinemia (P < 0.05). These metabolic/hormonal changes were associated with a decrease in fetal body weight (P < 0.05) in the multiple course Dex group compared with the multiple course placebo group. These perturbations were associated with an increase in fetal skeletal muscle GLUT 1 concentrations that mediate basal glucose transport in the extensor digitorum lateralis and extensor digitorum longus muscles (P < 0.05) 18 h after the last dose of Dex was given in the single course group. However, in the multiple course Dex group, a small increase in GLUT 1 was observed only in the biceps femoris. In contrast, both single and multiple courses of antenatal Dex were associated with an increase in the extensor digitorum lateralis and biceps femoris muscle GLUT 4 (insulin-responsive) concentrations (P < 0.05). We conclude that antenatal corticosteroids perturb fetal glucose/insulin homeostasis, which is associated with increases in fetal skeletal muscle glucose transporters to compensate for and attenuate the associated catabolic fetal state. These changes consist of an increase in proteins that mediate basal glucose transport (GLUT 1) to meet immediate energy requirements of the fetal skeletal muscle with an increase in basal insulin sensitivity (GLUT 4) to compensate for the Dex-induced catabolic state after exposure to multiple courses of Dex.

1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


1997 ◽  
Vol 272 (1) ◽  
pp. E7-E17 ◽  
Author(s):  
T. Ploug ◽  
X. Han ◽  
L. N. Petersen ◽  
H. Galbo

Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport was reduced at least 86 and 49%, respectively, in both the soleus and red and white gastrocnemius muscles. In contrast, PTX treatment was much less efficient. Impairment of glucose transport appeared to develop 10-15 h after CTX administration, which coincided with development of hyperglycemia despite hyperinsulinimia, increased plasma free fatty acid levels, increased adenosine 3',5'-cyclic monophosphate (cAMP) concentrations in muscle, but no difference in plasma catecholamines. Twenty-five hours after CTX treatment, GLUT-4 protein in both soleus and red gastrocnemius muscles was decreased, whereas no change in GLUT-1 protein content was found. In contrast, GLUT-4 mRNA was unchanged, but transcripts for GLUT-1 were increased > or = 150% in all three muscles from CTX-treated rats. The findings suggest that CTX via increased cAMP impairs basal as well as insulin- and contraction-stimulated muscle glucose transport, at least in part from a decrease in intramuscular GLUT-4 protein.


1995 ◽  
Vol 269 (3) ◽  
pp. R544-R551 ◽  
Author(s):  
X. Han ◽  
T. Ploug ◽  
H. Galbo

A diet rich in fat diminishes insulin-mediated glucose uptake in muscle. This study explored whether contraction-mediated glucose uptake is also affected. Rats were fed a diet rich in fat (FAT, 73% of energy) or carbohydrate (CHO, 66%) for 5 wk. Hindquarters were perfused, and either glucose uptake or glucose transport capacity (uptake of 3-O-[14C]-methyl-D-glucose (40 mM)) was measured. Amounts of glucose transporter isoform GLUT-1 and GLUT-4 glucose-transporting proteins were determined by Western blot. Glucose uptake was lower (P < 0.05) in hindlegs from FAT than from CHO rats at submaximum and maximum insulin [4 +/- 0.4 vs. 5 +/- 0.3 (SE) mumol.min-1.leg-1 at 150 microU/ml insulin] as well as during prolonged stimulation of the sciatic nerve (4.4 +/- 0.4 vs. 5.6 +/- 0.6 mumol.min-1.leg-1). Maximum glucose transport elicited by insulin (soleus: 1.7 +/- 0.2 vs. 2.6 +/- 0.2 mumol.g-1.5 min-1, P < 0.05) or contractions (soleus: 1.8 +/- 0.2 vs. 2.6 +/- 0.3, P < 0.05) in red muscle was decreased in parallel in FAT compared with CHO rats. GLUT-4 content was decreased by 13-29% (P < 0.05) in the various fiber types, whereas GLUT-1 content was identical in FAT compared with CHO rats. It is concluded that a FAT diet reduces both insulin and contraction stimulation of glucose uptake in muscle and that these effects are associated with diminished skeletal muscle glucose transport capacities and GLUT-4 contents.


1992 ◽  
Vol 117 (4) ◽  
pp. 729-743 ◽  
Author(s):  
RC Piper ◽  
C Tai ◽  
JW Slot ◽  
CS Hahn ◽  
CM Rice ◽  
...  

GLUT-4 is the major facilitative glucose transporter isoform in tissues that exhibit insulin-stimulated glucose transport. Insulin regulates glucose transport by the rapid translocation of GLUT-4 from an intracellular compartment to the plasma membrane. A critical feature of this process is the efficient exclusion of GLUT-4 from the plasma membrane in the absence of insulin. To identify the amino acid domains of GLUT-4 which confer intracellular sequestration, we analyzed the subcellular distribution of chimeric glucose transporters comprised of GLUT-4 and a homologous isoform, GLUT-1, which is found predominantly at the cell surface. These chimeric transporters were transiently expressed in CHO cells using a double subgenomic recombinant Sindbis virus vector. We have found that wild-type GLUT-4 is targeted to an intracellular compartment in CHO cells which is morphologically similar to that observed in adipocytes and muscle cells. Sindbis virus-produced GLUT-1 was predominantly expressed at the cell surface. Substitution of the GLUT-4 amino-terminal region with that of GLUT-1 abolished the efficient intracellular sequestration of GLUT-4. Conversely, substitution of the NH2 terminus of GLUT-1 with that of GLUT-4 resulted in marked intracellular sequestration of GLUT-1. These data indicate that the NH2-terminus of GLUT-4 is both necessary and sufficient for intracellular sequestration.


1990 ◽  
Vol 269 (3) ◽  
pp. 597-601 ◽  
Author(s):  
D M Calderhead ◽  
K Kitagawa ◽  
G E Lienhard ◽  
G W Gould

Insulin-stimulated glucose transport was examined in BC3H-1 myocytes. Insulin treatment lead to a 2.7 +/- 0.3-fold increase in the rate of deoxyglucose transport and, under the same conditions, a 2.1 +/- 0.1-fold increase in the amount of the brain-type glucose transporter (GLUT 1) at the cell surface. It has been shown that some insulin-responsive tissues express a second, immunologically distinct, transporter, namely GLUT 4. We report here that BC3H-1 myocytes and C2 and G8 myotubes express only GLUT 1; in contrast, rat soleus muscle and heart express 3-4 times higher levels of GLUT 4 than GLUT 1. Thus translocation of GLUT 1 can account for most, if not all, of the insulin stimulation of glucose transport in BC3H-1 myocytes. On the other, hand, neither BC3H-1 myocytes nor the other muscle-cell lines are adequate as models for the study of insulin regulation of glucose transport in muscle tissue.


2003 ◽  
Vol 284 (4) ◽  
pp. R1138-R1146 ◽  
Author(s):  
Jing He ◽  
M. Thamotharan ◽  
Sherin U. Devaskar

We examined the effect of insulin on fetal/neonatal rat skeletal muscle GLUT-1 and GLUT-4 concentrations and subcellular distribution by employing immunohistochemical analysis and subcellular fractionation followed by Western blot analysis. We observed that insulin did not alter total GLUT-1 or GLUT-4 concentrations or the GLUT-1 subcellular distribution in fetal/neonatal or adult skeletal muscle in 60 min. The basal and insulin-induced changes in subcellular distribution of GLUT-4 were different between the fetal/neonatal and adult skeletal muscle. Under basal conditions, sarcolemma-associated GLUT-4 was higher in the newborn compared with the adult, translating into a higher glucose transport. In contrast, insulin-induced translocation of GLUT-4 to the sarcolemma- and insulin-induced glucose transport was lower in the newborn compared with the adult. This age-related change results in enhanced basal glucose transport to fuel myocytic proliferation and differentiation while relatively curbing the insulin-dependent glucose transport in the newborn.


1996 ◽  
Vol 80 (5) ◽  
pp. 1605-1611 ◽  
Author(s):  
P. A. Hansen ◽  
T. J. McCarthy ◽  
E. N. Pasia ◽  
R. J. Spina ◽  
E. A. Gulve

The present study examined the effects of 6 wk of ovarian endocrine deficiency on skeletal muscle GLUT-4 glucose transporter protein and glucose transport activity in sedentary and endurance-trained rats. Female Wistar rats (10 wk old) underwent bilateral ovariectomy (OVX) or sham surgery followed by a 5-wk swim-training protocol. OVX resulted in no significant changes in glycogen or GLUT-4 glucose transporter concentration in the soleus, epitrochlearis, or flexor digitorum brevis (FDB) muscles or in basal and maximally insulin-stimulated 2-deoxy-D-[1,2-3H]glucose (2-[3H]DG) transport in the soleus or epitrochlearis, suggesting that moderate-duration ovarian hormone deficiency does not significantly impair insulin action in skeletal muscle. In contrast, OVX decreased the maximal activation of 2-[3H]DG transport in the FDB by in vitro electrical stimulation. OVX had no significant effect on the training-induced changes in oxidative enzyme activities, GLUT-4 protein expression, glycogen content, or insulin-stimulated 2-[3H]DG transport in the soleus or epitrochlearis. These findings provide the first evidence that ovarian hormone deficiency decreases contraction-stimulated glucose transport in skeletal muscle.


2000 ◽  
Vol 279 (3) ◽  
pp. E529-E538 ◽  
Author(s):  
M. Gaster ◽  
A. Handberg ◽  
H. Beck-Nielsen ◽  
H. D. Schrøder

The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels.


1993 ◽  
Vol 265 (1) ◽  
pp. E128-E134 ◽  
Author(s):  
B. Stallknecht ◽  
P. H. Andersen ◽  
J. Vinten ◽  
L. L. Bendtsen ◽  
J. Sibbersen ◽  
...  

Physical training increases insulin-stimulated glucose transport and the number of glucose transporters in adipocytes measured by cytochalasin B binding. In the present study we used immunoblotting to measure the abundance of two glucose transporters (GLUT-4, GLUT-1) in white adipocytes from trained rats. Furthermore, the abundance of the mRNAs for these proteins and glucose transport was measured. Rats were swim-trained for 10 wk, and adipocytes were isolated from epididymal fat pads. The amount of GLUT-4/adipocyte volume unit was significantly higher in trained animals compared with both age- and cell size-matched animals. The amount of GLUT-4 mRNA was also increased by training and it decreased with increasing age. Furthermore, young age as well as training was accompanied by relatively low GLUT-4 protein/mRNA and relatively high overall GLUT-4 efficiency (recruitability and/or intrinsic activity). GLUT-1 protein and mRNA levels/adipocyte volume did not change with age or training.


Sign in / Sign up

Export Citation Format

Share Document