Metabolic hormones regulate insulin-like growth factor binding protein-1 mRNA levels in primary cultured salmon hepatocytes; lack of inhibition by insulin
IGF-binding proteins (IGFBPs) modulate the effects of the IGFs, major stimulators of vertebrate growth and development. In mammals, IGFBP-1 inhibits the actions of IGF-I. Rapid increases in circulating IGFBP-1 occur during catabolic states. Insulin and glucocorticoids are the primary regulators of circulating IGFBP-1 in mammals. Insulin inhibits and glucocorticoids stimulate hepatocyte IGFBP-1 gene expression and production. A 22 kDa IGFBP in salmon blood also increases during catabolic states and has recently been identified as an IGFBP-1 homolog. We examined the hormonal regulation of salmon IGFBP-1 mRNA levels and protein secretion in primary cultured salmon hepatocytes. The glucocorticoid agonist dexamethasone progressively increased hepatocyte IGFBP-1 mRNA levels (eightfold) and medium IGFBP-1 immunoreactivity over concentrations comparable with stressed circulating cortisol levels (10−9–10−6 M). GH progressively reduced IGFBP-1 mRNA levels (0.3-fold) and medium IGFBP-1 immunoreactivity over physiological concentrations (5 × 10−11–5 × 10−9 M). Unexpectedly, insulin slightly increased hepatocyte IGFBP-1 mRNA (1.4-fold) and did not change medium IGFBP-1 immunoreactivity over physiological concentrations and above (10−9–10−6 M). Triiodothyronine had no effect on hepatocyte IGFBP-1 mRNA, whereas glucagon increased IGFBP-1 mRNA (2.2-fold) at supraphysiological concentrations (10−6 M). This study suggests that the major inhibitory role of insulin in the regulation of liver IGFBP-1 production in mammals is not found in salmon. However, regulation of salmon liver IGFBP-1 production by other metabolic hormones is similar to what is found in mammals.