Wave run-up on sloping coastal structures: prototype measurements versus scale model tests

Author(s):  
Julien De Rouck ◽  
Peter Troch ◽  
Björn Van de Walle ◽  
Marcel R. A. Van Gent ◽  
Luc Van Damme ◽  
...  
Author(s):  
Andrew Cornett

Many deck-on-pile structures are located in shallow water depths at elevations low enough to be inundated by large waves during intense storms or tsunami. Many researchers have studied wave-in-deck loads over the past decade using a variety of theoretical, experimental, and numerical methods. Wave-in-deck loads on various pile supported coastal structures such as jetties, piers, wharves and bridges have been studied by Tirindelli et al. (2003), Cuomo et al. (2007, 2009), Murali et al. (2009), and Meng et al. (2010). All these authors analyzed data from scale model tests to investigate the pressures and loads on beam and deck elements subject to wave impact under various conditions. Wavein- deck loads on fixed offshore structures have been studied by Murray et al. (1997), Finnigan et al. (1997), Bea et al. (1999, 2001), Baarholm et al. (2004, 2009), and Raaij et al. (2007). These authors have studied both simplified and realistic deck structures using a mixture of theoretical analysis and model tests. Other researchers, including Kendon et al. (2010), Schellin et al. (2009), Lande et al. (2011) and Wemmenhove et al. (2011) have demonstrated that various CFD methods can be used to simulate the interaction of extreme waves with both simple and more realistic deck structures, and predict wave-in-deck pressures and loads.


2020 ◽  
Vol 20 (3) ◽  
pp. 333-342
Author(s):  
Le Hai Trung ◽  
Dang Thi Linh ◽  
Tang Xuan Tho ◽  
Nguyen Truong Duy ◽  
Tran Thanh Tung

Seawalls have been erected to protect hundreds of towns and tourism areas stretching along the coast of Vietnam. During storm surges or high tides, wave overtopping and splash-up would often threaten the safety of infrastructures, traffic and residents on the narrow land behind. Therefore, this study investigates these wave-wall interactions via hydraulic small scale model tests at Thuyloi University. Remarkably, the structure models were shaped to have different seaward faces and bullnoses. The wave overtopping discharge and splash run-up height at seawalls with bullnose are significantly smaller than those without bullnose. Furthermore, the magnitude of these decreasing effects is quantitatively estimated.


2016 ◽  
Vol 118 ◽  
pp. 1-11 ◽  
Author(s):  
Lisham Bonakdar ◽  
Hocine Oumeraci ◽  
Amir Etemad-Shahidi

1976 ◽  
Vol 1 (15) ◽  
pp. 43 ◽  
Author(s):  
Heie F. Erchinger

The height of dikes and other coastal structures can only be calculated after determination of the wave run-up. Several formulas for the calculation of wave run-up are developed after model tests as a rule. But the influences of scale effects and natural wind conditions are practically unknown. To clear these questions further investigations and especially field measurements should be carried out. By measuring the markerline of floating trash on the slope of the seadikes the maximum wave run-up could be found out after four storm surges in 1967 and 1973- In two graphs it will be shown that on the tidal flats the run-up depends on the waterdepth. The run-up was higher than it could be expected after model tests of 1954. With a newly developed special echo sounder the run-up could be measured in January 1976. The waves and the run-up could be registrated synchronously during two severe storm surges. As shown in Fig. 9 it was found a logarithmic distribution of the wave height, wave period and the higher part of the wave run-up. The found wave run-up is considerably higher than estimated before. The measured 98 % run-up is found about twice the computed value. That is an interesting and important result of the first synchronous recording of wave run-up on sea dikes.


Author(s):  
Fasuo Yan ◽  
Hui Yang ◽  
Pengfei Shen ◽  
Dagang Zhang ◽  
Liping Sun

Design of a floating structure is supposed to be based on the extreme responses experienced by the components of the structure during its lifetime. The airgap response and potential deck impact of ocean structures under sea waves is of considerable interest. Non-linear diffraction models are usually called for a more consistent evaluation of the wave field under the deck and the wave run-up upon the columns, but even second-order analysis is not free of uncertainties. Therefore, air gap evaluation still relies heavily on experimental analysis. This paper presents some deep-tank results performed for the evaluation of the dynamic airgap of a large-volume semisubmersible platform. A series of model tests were carried out for the scale model of a horizontal moored semi in regular and extreme irregular wave conditions. Airgap response combined with run-up close to columns at total 11 locations on the deck was evaluated under oblique wave status. Motions and elevation data are analyzed by statistical treatment. Weibull-tail fitting procedure is realized to determine the extreme response levels.


1989 ◽  
Author(s):  
R. DE GAAIJ ◽  
E. VAN RIETBERGEN ◽  
M. SLEGERS

Author(s):  
Jun Tang ◽  
Yongming Shen

Coastal vegetation can not only provide shade to coastal structures but also reduce wave run-up. Study of long water wave climb on vegetation beach is fundamental to understanding that how wave run-up may be reduced by planted vegetation along coastline. The present study investigates wave period influence on long wave run-up on a partially-vegetated plane slope via numerical simulation. The numerical model is based on an implementation of Morison’s formulation for rigid structures induced inertia and drag stresses in the nonlinear shallow water equations. The numerical scheme is validated by comparison with experiment results. The model is then applied to investigate long wave with diverse periods propagating and run-up on a partially-vegetated 1:20 plane slope, and the sensitivity of run-up to wave period is investigated based on the numerical results.


Sign in / Sign up

Export Citation Format

Share Document