A new specimen preparation technique for the scanning electron microscope

Géotechnique ◽  
1975 ◽  
Vol 25 (1) ◽  
pp. 142-145 ◽  
Author(s):  
K. Y. Wong ◽  
N. K. Tovey
2007 ◽  
Vol 15 (5) ◽  
pp. 40-41 ◽  
Author(s):  
Gan Phay Fang

Specimen preparation techniques for Scanning Electron Microscope (SEM) imaging of condoms as reported by Rosenzweig et al revealed a variety of artifacts. The artifacts were classified as ridging, cracking and melting. The purpose of this article is to introduce a simple specimen preparation technique for condoms to be evaluated via SEM without any surface artifacts. This technique involves the use of two chrome washers to sandwich the condom. The sandwiched condom specimen is then subjected to coating before mounting on an aluminium stub. The execution of this technique requires patience and practice so as not to damage the condom. The method may be applied to any similar polymer material.


Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Terrence W. Reilly

Although the first commercial scanning electron microscope (SEM) was introduced in 1965, the limited resolution and the lack of preparation techniques initially confined biological observations to relatively low magnification images showing anatomical surface features of samples that withstood the artifacts associated with air drying. As the design of instrumentation improved and the techniques for specimen preparation developed, the SEM allowed biologists to gain additional insights not only on the external features of samples but on the internal structure of tissues as well. By 1985, the resolution of the conventional SEM had reached 3 - 5 nm; however most biological samples still required a conductive coating of 20 - 30 nm that prevented investigators from approaching the level of information that was available with various TEM techniques. Recently, a new SEM design combined a condenser-objective lens system with a field emission electron source.


Author(s):  
Zhang zhaohua ◽  
Luo Dong ◽  
Guo Yisong

Since early 1970's the use of cold stage on SEM for observation of hydrated samples in their natural state has become more and more popular despite its high cost. Experiences gained from earlier experiments indicate that a successful design should incorporate thefollowing features:1. The specimen temperature should be below −135°C (the recrystallization point of water), lower the temperature, better the results.2. The frozen specimen, the cold block in the specimen preparation chamber, as well as the cold stage should be kept under vacuum at all times to keep them frost free.3. Different specimen preparation processes such as fracturing, coating and sublimation should be possible in one compact preparation chamber .


1975 ◽  
Vol 253 (7) ◽  
pp. 521-526 ◽  
Author(s):  
D. M. Koenhen ◽  
M. A. de Jongh ◽  
C. A. Smolders ◽  
N. Yücesoy

2004 ◽  
Vol 19 (2) ◽  
pp. 100-103 ◽  
Author(s):  
R. P. Goehner ◽  
J. R. Michael

The identification of crystallographic phases in the scanning electron microscope (SEM) has been limited by the lack of a simple way to obtain electron diffraction data of an unknown while observing the microstructure of the specimen. With the development of charge coupled device (CCD)-based detectors, backscattered electron Kikuchi patterns, alternately referred to as electron backscattered diffraction (EBSD) patterns, can be easily collected. Previously, EBSD has been limited to crystallographic orientation studies due to the poor pattern quality collected with video rate detector systems. With CCD detectors, a typical EBSD can now be acquired from a micron or submicron sized crystal using an exposure time of 1–10 s with an accelerating voltage of 10–40 kV and a beam current as low as 0.1 nA. Crystallographic phase analysis using EBSD is unique in that the properly equipped SEM permits high magnification images, EBSDs, and elemental information to be collected from bulk specimens. EBSD in the SEM has numerous advantages over other electron beam-based crystallographic techniques. The large angular view (∼70°) provided by EBSD and the ease of specimen preparation are distinct advantages of the technique. No sample preparation beyond what is commonly used for SEM specimens is required for EBSD.


1997 ◽  
Vol 5 (1) ◽  
pp. 14-15
Author(s):  
Vivian Robinson

Ever since electron microscopes were developed, it has been the goal of microscopists to observe specimens in their natural state, free from artefacts which can often be introduced through specimen preparation. For most biological specimens, that includes the presence of water. With a pressure of 10-4 torr or lower required to operate a scanning electron microscope (SEM), liquid water, which required a pressure of above 5 torr, was clearly a problem.Although several attempts had been made to examine hydrated specimens in a SEM, the first published results of water imaged in a stable and reproducible manner in the SEM, were presented at the Eighth International Congress on Electron Microscopy in Canberra in 1974 (Robinson, 1974).


2007 ◽  
Vol 33 (2) ◽  
pp. 51-58 ◽  
Author(s):  
Manal M. Shalabi ◽  
Johannes G. C. Wolke ◽  
Anja J. E. de Ruijter ◽  
John A. Jansen

Abstract The aim of the study was to assess the effects of surgical technique and implant surface roughness on implant fixation. A total of 48 screw implants with machined or etched surface topographies were placed into the femoral condyles of goats. The implant sites were prepared by a conventional technique, by undersized preparation, or by the osteotome technique. Bone tissue responses were evaluated after 12 weeks of healing by removal torque testing and histologic analysis using scanning electron microscope. The cumulative removal torque value of the etched implants placed with the undersized technique (98 ± 29 Ncm) was higher (50 ± 35 Ncm) to a level of statistical significance than machined surface implants placed by the osteotome technique. Scanning electron microscope evaluation indicated that all implants showed interfacial bone contact. The torque test resulted in fracture at the bone-implant interface for all experimental conditions. Installation of etched implants using an undersized preparation of the implant bed resulted in superior bonding strength with the surrounding bone at 12 weeks after surgery. Evidently, the undersized preparation technique improved the early fixation of oral implants in this study.


Sign in / Sign up

Export Citation Format

Share Document