Load capacity of squat RC shear walls by strut-and-tie model

2016 ◽  
Vol 68 (24) ◽  
pp. 1265-1277 ◽  
Author(s):  
Ju-Hyun Mun ◽  
Keun-Hyeok Yang
2008 ◽  
Vol 400-402 ◽  
pp. 917-922 ◽  
Author(s):  
Qian Gu ◽  
Cheng Fang Sun ◽  
Shao Min Peng

Based on 3D strut-and-tie analogy developed for analyzing the load-transferring mechanism of deep pile cap, this paper focuses on the effect of different longitudinal reinforcement layouts at the lower part of cap on the mechanical behaviors of deep four-pile cap. Besides a common layout of uniformly distributed reinforcement by the flexural theory, three different layouts of concentrated reinforcement over piles were designed by 3D strut-and-tie analogy. All specimens were limited in same reinforcement percentages, dimensions, materials and test procedures. Four specimens with the scale ratio of 1/5 were tested under the statically incremental gravity loading. The load capacity, deflection, strain of longitudinal reinforcement of specimens were measured, and the failure mode, crack propagation, deformation of specimens and stress distribution of reinforcement were analyzed. Through comparisons of the test results among all specimens, it was found that deep pile cap failed in shear and corner-pile punching whether with concentrated or uniform reinforcement, and the reinforcement concentrated over each two adjacent piles, similar to the tension bars in the strut-and-tie model, had considerable advantages than common uniform reinforcement layout. The ultimate strength of deep pile cap with concentrated reinforcement was significantly increased, while the improvement of deformation resistance and brittleness of deep pile cap was limited. According to above findings, the appropriate reinforcement layouts for deep pile cap were suggested in this paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peibo You ◽  
Shuaiqi Song ◽  
Haiyang Zhang ◽  
Lijuan Zhang ◽  
Ke Shi ◽  
...  

The steel fiber reinforced concrete (SFRC) shear wall with concrete filled steel tube (CFST) columns is an innovative composite structure. In order to calculate the shear strength of SFRC shear wall with CFST columns, the softened strut and tie model (SSTM) of SFRC shear wall with CFST columns was proposed based on the analysis of shear mechanism of SFRC shear wall with CFST columns. The SSTM was composed of diagonal, horizontal, and vertical mechanisms, in which the contributions of concrete, reinforcement, and steel fiber to the shear strength of SFRC web of shear wall were identified. The shear capacities of 24 shear walls were calculated and compared with the available test results, and reasonable agreement was obtained. The results also showed that the steel fibers distributed randomly in concrete could be treated as longitudinal and transverse reinforcement in the shear strength analysis of SFRC web, and the SSTM was reasonable and useful to analyze and predict the shear strength of SFRC shear wall with CFST columns.


2018 ◽  
Vol 26 (7) ◽  
pp. 16-35
Author(s):  
Qasim Mohammed Shakir ◽  
Baneen Basim Abd ◽  
Ali Talib Jasim

This study aims to investigate experimentally the behavior of self-compacting reinforced concrete dapped end beams strengthened with CFRP sheets and, then theoretically by ANSYS 15.0 software. The experimental program consists of testing 14-specimens each of dimensions (200x400x1500 mm) with two values of Shear span to depth effective (a/d), namely (1.5 and 1.0). Two of the beams are a control beams (with full reinforcement), and four beams with reduced reinforcement in hanger and nib regions. The other beams have been strengthened with several configurations by CFRP sheets for the same values of (a/d), the comparison between results included load-deflection curves and cracked specimens. It was found that the strut and tie model (STM) is very conservative somehow, reduction the nib reinforcements by about (60%), in reduction in failure load by about (35% and 15%) for the two values of (a/d). With respect to the strengthened specimens, it observed that the strengthening with inclined CFRP strips (450) yielded better results in comparison with other configurations. The improvement in load capacity was about (23%) for (a/d=1.5 and 1.0). Also, it is found that the nonlinear model adopted in the present work compered the experimental tests yielded a good agreement with difference of about (12%).


Author(s):  
Sukarman Sukarman ◽  
Djoko Sulistyo ◽  
Inggar Septhia Irawati

 ABSTRACTPile cap is one of the many types of structures that are entirely Disturbed-region. The structure undergoes a non-linear strain because it was meeting point of the pile and column with centralized forces. In addition, geometry changes occur at the meeting between the column, pile cap, and pile, so the Bernoulli concept is no longer suitable for this condition. Pile cap testing consists of two groups of specimens and each group consists of three specimens. The first group was designed using the STM method (SNI 2847: 2013 Appendix A) and the second group was designed using conventional methods (SNI 2847: 2013 Article 15). Loading is the application of a centralized static load that is channeled through a centric column until the pile cap structure has collapsed. The results show that: (1) The flexural reinforcement which experiences the first yield condition both on the pile cap testing of the STM method and in the conventional method was the X direction flexural reinforcement (outsidest flexural reinforcement). (2) The average strain of the yield conditions and load on the pile cap STM method were 2242 με and 528.97 kN, whereas the conventional method were 2436 με and 437.03 kN. (3) Increasing the load capacity of the yield conditions (Py) of the pile cap STM method and conventional method on the plan load (Pn) were 32.2% and 9.3%.Keywords: pile cap, four piles, Strut and Tie Model (STM)  ABSTRAK Pile cap merupakan salah satu dari jenis struktur yang sepenuhnya merupakan daerah terganggu (Disturbed-region). Struktur tersebut mengalami regangan non-linear karena merupakan titik pertemuan pile dan kolom dengan gaya-gaya terpusat. Selain itu, terjadi perubahan geometri pada pertemuan antara kolom, pile cap, dan pile, sehingga konsep Bernoulli tidak cocok lagi pada kondisi tersebut. Pengujian pile cap terdiri dari dua kelompok benda uji dan masing-masing kelompok terdiri dari tiga buah benda uji. Kelompok pertama dirancang menggunakan metode STM (SNI 2847:2013 Lampiran A) dan kelompok kedua dirancang menggunakan metode konvensional (SNI 2847:2013 Pasal 15). Pembebanan berupa penerapan beban statik terpusat yang disalurkan melalui kolom sentris sampai struktur pile cap mengalami keruntuhan. Hasil menunjukkan bahwa: (1) Tulangan lentur yang mengalami kondisi leleh terlebih dahulu baik pada pengujian benda uji pile cap metode STM maupun pada metode konvensional adalah tulangan lentur arah X (tulangan lentur terluar). (2) Rata-rata regangan kondisi leleh dan beban pada benda uji pile cap metode STM adalah 2242 με dan 528,97 kN, sedangkan pada metode konvensional adalah 2436 με dan 437,03 kN . (3) Peningkatan kapasitas beban kondisi leleh (Py) pada benda uji pile cap metode STM dan metode konvensional terhadap beban rencana (Pn) adalah 32,2 % dan 9,3 %. Kata kunci: pile cap, empat tiang, Strut-and-Tie Model (STM)


Author(s):  
Maulana Agung Sedayu ◽  
Djoko Sulistyo ◽  
Akhmad Aminullah

 ABSTRACTIn general, the design of the pile cap structure still uses conventional method assuming all regions experience linear strain. However, in reality the strain distribution in the cross section of the structure is not always linear so that a rational analysis method is needed with the assumption that is close to the actual condition using the strut and tie model method. This study aims to determine the behavior of crack pattern in the pile cap designed using the strut and tie model method (SNI 2847:2013 Appendix A) compared to conventional methods (SNI 2847:2013 Article 15). The specimen is the pile cap with three-piles and concentrated load, each of which has three methods. Loading is a static load that is channeled through a column located centric towards the structure of the pile cap. The results show that: the entire test object based on the two methods have flexural crack pattern. The average load capacity of the first crack (Pcr) on the specimen was designed using the strut and tie model and the conventional method were 239.0 kN and 193.7 kN. The average of crack width on the specimen using the strut and tie model and the conventional method were 0.68 mm and 3.88 mm.Keywords: crack pattern, pile cap, three-piles, strut and tie model ABSTRAK Pada umumnya perancangan struktur pile cap masih menggunakan metode konvensional dengan asumsi semua daerah mengalami regangan linier. Akan tetapi pada kenyataannya distribusi regangan pada penampang struktur tidak selalu linier sehingga diperlukan suatu metode analisis yang rasional dengan asumsi yang mendekati kondisi sebenarnya yaitu menggunakan metode strut and tie model. Penelitian ini bertujuan untuk mengetahui perilaku pola retak pada pile cap yang dirancang dengan metode strut and tie model (SNI 2847:2013 Lampiran A) dibandingkan dengan metode konvensional (SNI 2847:2013 Pasal 15). Pada setiap metode terdiri dari tiga buah benda uji berupa pile cap tiga tiang dengan beban sentris. Pembebanan berupa beban statis yang disalurkan melalui kolom yang terletak sentris terhadap struktur pile cap. Hasil pengujian menunjukkan bahwa keseluruhan benda uji berdasarkan kedua metode mempunyai pola retak lentur (flexural crack). Untuk rata-rata kapasitas beban saat retak pertama (Pcr) pada benda uji yang dirancang menggunakan metode strut and tie model dan metode konvensional adalah sebesar 239,0 kN dan 193,7 kN. Kemudian rata-rata lebar retak pada benda uji menggunakan metode strut and tie model dan metode konvensional adalah sebesar 0,68 mm dan 3,88 mm. Kata kunci: pola retak, pile cap, tiga tiang, strut and tie model


Sign in / Sign up

Export Citation Format

Share Document