Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls

2015 ◽  
Vol 27 (6) ◽  
pp. 615-623
Author(s):  
Ju-Hyun Mun ◽  
Keun-Hyeok Yang
2011 ◽  
Vol 243-249 ◽  
pp. 514-520
Author(s):  
Chun Yang ◽  
Ming Ji He ◽  
Jian Cai ◽  
Yan Sheng Huang ◽  
Yi Wu

Based on strut-and-tie model (STM) in deep beams, steel truss reinforced concrete (STRC) deep beam was developed. Experimental investigations of mechanical performances of STRC deep beams were carried out, and results show that STRC deep beam is of high ultimate bearing capacity, large rigidity and good ductility; Strut-and-tie force transference model is formed in STRC deep beams, and loads can be transferred in the shortest and direct way. Then Steel reinforced concrete (SRC) strut-and-tie model (SSTM) for determining the shear strength of STRC deep beams is proposed. The contribution of SRC diagonal strut, longitudinal reinforcements, stirrups and web reinforcements to the shear strength of STRC deep beams are determined with consideration of softened effects of concrete, and for safe consideration, superposition theory is employed for SRC struts. Computer programs are developed to calculate the shear strength of STRC deep beams and verified by experimental results.


2014 ◽  
Vol 931-932 ◽  
pp. 468-472
Author(s):  
Piyoros Tasenhod ◽  
Jaruek Teerawong

Shear strength prediction of simple deep reinforced concrete beams by method of strut-and-tie model is presented in this paper. The tested specimens were designed according to Appendix A of ACI 318-11 code with variations of shear span-to-effective depth ratios and ratios of horizontal and vertical crack-controlling reinforcement. Test results revealed that at the same shear span-to-effective depth ratio, the various crack-controlling reinforcements significantly influenced on strength reduction coefficients of strut and failure modes. When the shear span-to-effective depth ratios were increased, failure modes changed from splitting diagonal strut to flexural-shear failure. Based on the test results, the proposed model was compared with Appendix A of ACI 318-11code.


2018 ◽  
Vol 21 (1) ◽  
pp. 86
Author(s):  
Ahmed Faleh Al-Bayati

This paper presents a simple strut and tie model to calculate the shear strength of reinforced concrete deep beams. The proposed model assumes that the shear strength is the algebraic sum of three strength components: concrete diagonal strut, vertical stirrups, and horizontal web reinforcements. The contribution of each strength components was calibrated with the test results of 305 deep beams compiled from previous studies with wide range of geometrical and material properties. The predictions of the proposed model were compared with those of the current codes of practice (ACI-318-14 and ASHTOO 2014) and those of existing model in the literature. Comparisons revealed that the proposed model provided better predictions than other models. The mean of predicted strength to test of the proposed model, the ACI-318-14 model, the ASHTOO 2014 model were 0.98, 0.79, and 0.75, respectively. The corresponding standard deviations were 0.17, 0.28, and 0.49, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peibo You ◽  
Shuaiqi Song ◽  
Haiyang Zhang ◽  
Lijuan Zhang ◽  
Ke Shi ◽  
...  

The steel fiber reinforced concrete (SFRC) shear wall with concrete filled steel tube (CFST) columns is an innovative composite structure. In order to calculate the shear strength of SFRC shear wall with CFST columns, the softened strut and tie model (SSTM) of SFRC shear wall with CFST columns was proposed based on the analysis of shear mechanism of SFRC shear wall with CFST columns. The SSTM was composed of diagonal, horizontal, and vertical mechanisms, in which the contributions of concrete, reinforcement, and steel fiber to the shear strength of SFRC web of shear wall were identified. The shear capacities of 24 shear walls were calculated and compared with the available test results, and reasonable agreement was obtained. The results also showed that the steel fibers distributed randomly in concrete could be treated as longitudinal and transverse reinforcement in the shear strength analysis of SFRC web, and the SSTM was reasonable and useful to analyze and predict the shear strength of SFRC shear wall with CFST columns.


2006 ◽  
Vol 22 (4) ◽  
pp. 311-320 ◽  
Author(s):  
W.-Y. Lu

AbstractThe shear failure probabilities of reinforced concrete beam-column joints have been investigated by Monte Carlo method. The theoretical shear strength of joints is based on the softened strut-and-tie model proposed by Hwang and Lee (2002). The random variables included in this study are the strengths of concrete, the ultimate compression strain of concrete, the strengths of reinforcement, the dimensions of cross-section, and the model error of theoretical shear strength of joints. The shear failure probabilities of joints with SD 280 flexural reinforcement in the beams designed using the ACI Code are all higher than 0.04. The joints designed according to the softened strut-and-tie model are safer than those designed according to the ACI Code. The shear failure probabilities of exterior joints are higher than those of interior joints. The shear failure probabilities of joints with SD 280 flexural reinforcement in the beams are higher than those of joints with SD 420 flexural reinforcement.


2016 ◽  
Vol 12 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Vinayak Hemant Kumar ◽  
N.A.K Sivaa Senthil ◽  
T V Pradeep Kumar

Abstract A simple and direct Strut-and-Tie Model (STM) is proposed here to predict the ultimate shear strength of the reinforced concrete bridge pier cap for shear span to depth ratio of 0.4 to 2.4. The model is based on the Kupfer-Gerstle Biaxial Compression-Tension failure criterion which includes the concrete softening effect produced by the presence of transverse tensile stress. The earlier models consider the stress distribution factor for the varied stress distribution across the section by assuming it as linear function which is derived by satisfying equilibrium conditions. In this study the principal stresses have been evaluated by satisfying the compatibility condition at the time of impending failure which has been accounted for the effective area of concrete resisting tension. Also the softening effect has been included by using the formula for tensile strength of cracked concrete proposed by Belarbi and Hsu. The proposed model has been validated with 43 experimental results by author and from literature which confirm the coherency and conservativeness of the predicted results. The parametric study on ultimate shear strength is done so as to infer the relation between various abstract quantities such as compressive strain, shear capacity, span depth ratio and other material properties and get a deeper insight into the behavior of the Pier cap. Thus this paper tries to extend the practical application of Strut-and-Tie Model for reinforced concrete bridge pier cap in understanding the actual behavior of the structure on various dimensional and material parameters.


Sign in / Sign up

Export Citation Format

Share Document