A review on the seismic behaviour of irregular bridges

Author(s):  
Reza Akbari ◽  
Shahrokh Maalek
2021 ◽  
Vol 11 (3) ◽  
pp. 906
Author(s):  
Payam Tehrani ◽  
Denis Mitchell

The seismic responses of continuous multi-span reinforced concrete (RC) bridges were predicted using inelastic time history analyses (ITHA) and incremental dynamic analysis (IDA). Some important issues in ITHA were studied in this research, including: the effects of using artificial and natural records on predictions of the mean seismic demands, effects of displacement directions on predictions of the mean seismic response, the use of 2D analysis with combination rules for prediction of the response obtained using 3D analysis, and prediction of the maximum radial displacement demands compared to the displacements obtained along the principal axes of the bridges. In addition, IDA was conducted and predictions were obtained at different damage states. These issues were investigated for the case of regular and irregular bridges using three different sets of natural and artificial records. The results indicated that the use of natural and artificial records typically resulted in similar predictions for the cases studied. The effect of displacement direction was important in predicting the mean seismic response. It was shown that 2D analyses with the combination rules resulted in good predictions of the radial displacement demands obtained from 3D analyses. The use of artificial records in IDA resulted in good prediction of the median collapse capacity.


Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


Author(s):  
A. Sandoli ◽  
G. P. Lignola ◽  
B. Calderoni ◽  
A. Prota

AbstractA hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions. Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minimum value of PGAs defined for each building class. To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber macroseismic intensity scale has been used and the corresponding fragility curves developed. Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


Author(s):  
Barış Erdil ◽  
Mücip Tapan ◽  
İsmail Akkaya ◽  
Fuat Korkut

The October 23, 2011 (Mw = 7.2) and November 9, 2011 (Mw = 5.6) earthquakes increased the damage in the minaret of Van Ulu Mosque, an important historical masonry structure built with solid bricks in Eastern Turkey, resulting in significant shear cracks. It was found that since the door and window openings are not symmetrically placed, they result in unsymmetrical stiffness distribution. The contribution of staircase and the core on stiffness is ignorable but its effect on the mass is significant. The pulpit with chamfered corner results in unsymmetrical transverse displacements. Brace wall improves the stiffness however contributes to the unsymmetrical behaviour considerably. The reason for the diagonal cracks can be attributed to the unsymmetrical brace wall and the chamfered pulpit but the effect of brace wall is more pronounced. After introducing the cracks, a new model was created and calibrated according to the results of Operational Modal Analysis. Diagonal cracks were found to be likely to develop under earthquake loading. Drifts are observed to increase significantly upon the introduction of the cracks.


2018 ◽  
Vol 172 ◽  
pp. 807-819 ◽  
Author(s):  
L. Gioiella ◽  
E. Tubaldi ◽  
F. Gara ◽  
L. Dezi ◽  
A. Dall'Asta

Sign in / Sign up

Export Citation Format

Share Document