Analysing changes in short-duration extreme rainfall events

2016 ◽  
Vol 169 (5) ◽  
pp. 201-211 ◽  
Author(s):  
Geoff J. C. Darch ◽  
Robert T. McSweeney ◽  
Christopher G. Kilsby ◽  
Phillip D. Jones ◽  
Timothy J. Osborn ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3364 ◽  
Author(s):  
Qi Zhuang ◽  
Shuguang Liu ◽  
Zhengzheng Zhou

Given the fact that researchers require more specific spatial rainfall information for storm flood calculation, hydrological risk assessment, and water budget estimates, there is a growing need to analyze the spatial heterogeneity of rainfall accurately. This paper provides insight into rainfall spatial heterogeneity in urban areas based on statistical analysis methods. An ensemble of short-duration (3-h) extreme rainfall events for four megacities in China are extracted from a high-resolution gridded rainfall dataset (resolution of 30 min in time, 0.1° × 0.1° in space). Under the heterogeneity framework using Moran’s I, LISA (Local Indicators of Spatial Association), and semi-variance, the multi-scale spatial variability of extreme rainfall is identified and assessed in Shanghai (SH), Beijing (BJ), Guangzhou (GZ), and Shenzhen (SZ). The results show that there is a pronounced spatial heterogeneity of short-duration extreme rainfall in the four cities. Heterogeneous characteristics of rainfall within location, range, and directions are closely linked to the different urban growth in four cities. The results also suggest that the spatial distribution of rainfall cannot be neglected in the design storm in urban areas. This paper constitutes a useful contribution to quantifying the degree of spatial heterogeneity and supports an improved understanding of rainfall/flood frequency analysis in megacities.


MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 391-400
Author(s):  
MEHFOOZ ALI ◽  
SURINDER KAUR ◽  
S.B. TYAGI ◽  
U.P. SINGH

Short duration rainfall estimates and their intensities for different return periods are required for many purposes such as for designing flood for hydraulic structures, urban flooding etc. An attempt has been made in this paper to Model extreme rainfall events of Short Duration over Lower Yamuna Catchment. Annual extreme rainfall series and their intensities were analysed using EVI distribution for rainstorms of short duration of 5, 10, 15, 30, 45 & 60 minutes and various return periods have been computed. The Self recording rainguage (SRRGs) data for the period 1988-2009 over the Lower Yamuna Catchment (LYC) have been used in this study. It has been found that EVI distribution fits well, tested by Kolmogorov-Smirnov goodness of fit test at 5 % level of significance for each of the station.


MAUSAM ◽  
2022 ◽  
Vol 46 (1) ◽  
pp. 41-46
Author(s):  
U. C. KOTHYARI ◽  
S. K. GARG

Depth Area Duration (DAD) analysis for the extreme rainfall events forms an important step in the hydrological design for the water resources structures. Review of literature reveals that enormous amount of work has been done concerning the DAD analysis for large duration (i.e. one day or more) storms. However, no work is reported so far on this aspect for storms having shorter duration. i.e. less than one day: Hourly rainfall data for 36 rainfall stations have been analysed  to develop simple DAD-relationship. This analysis pertains to the catchments of the rivers, namely Ramganga, Gomati, Yamuna  and Ghaghara.    


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2013 ◽  
Vol 31 (3) ◽  
pp. 413 ◽  
Author(s):  
André Becker Nunes ◽  
Gilson Carlos Da Silva

ABSTRACT. The eastern region of Santa Catarina State (Brazil) has an important history of natural disasters due to extreme rainfall events. Floods and landslides are enhancedby local features such as orography and urbanization: the replacement of natural surface coverage causing more surface runoff and, hence, flooding. Thus, studies of this type of events – which directly influence life in the towns – take on increasing importance. This work makes a quantitative analysis of occurrences of extreme rainfall events in the eastern and northern regions of Santa Catarina State in the last 60 years, through individual analysis, considering the history of floods ineach selected town, as well as an estimate through to the end of century following regional climate modeling. A positive linear trend, in most of the towns studied, was observed in the results, indicating greater frequency of these events in recent decades, and the HadRM3P climate model shows a heterogeneous increase of events for all towns in the period from 2071 to 2100.Keywords: floods, climate modeling, linear trend. RESUMO. A região leste do Estado de Santa Catarina tem um importante histórico de desastres naturais ocasionados por eventos extremos de precipitação. Inundações e deslizamentos de terra são potencializados pelo relevo acidentado e pela urbanização das cidades da região: a vegetação nativa vem sendo removida acarretando um maior escoamento superficial e, consequentemente, em inundações. Desta forma, torna-se de suma importância os estudos acerca deste tipo de evento que influencia diretamente a sociedade em geral. Neste trabalho é realizada uma análise quantitativa do número de eventos severos de precipitação ocorridos nas regiões leste e norte de Santa Catarina dos últimos 60 anos, por meio de uma análise pontual, considerandoo histórico de inundações de cada cidade selecionada, além de uma projeção para o fim do século de acordo com modelagem climática regional. Na análise dos resultados observou-se uma tendência linear positiva na maioria das cidades, indicando uma maior frequência deste tipo de evento nas últimas décadas, e o modelo climático HadRM3P mostra um aumento heterogêneo no número de eventos para todas as cidades no período de 2071 a 2100.Palavras-chave: inundações, modelagem climática, tendência linear.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Arturo Ruiz-Luna ◽  
Claudia Martínez-Peralta ◽  
Patricia P. B. Eichler ◽  
Leonardo R. Teixeira ◽  
Montserrat Acosta-Morel ◽  
...  

2021 ◽  
Author(s):  
Anil Deo ◽  
Savin S. Chand ◽  
Hamish Ramsay ◽  
Neil J. Holbrook ◽  
Simon McGree ◽  
...  

AbstractSouthwest Pacific nations are among some of the worst impacted and most vulnerable globally in terms of tropical cyclone (TC)-induced flooding and accompanying risks. This study objectively quantifies the fractional contribution of TCs to extreme rainfall (hereafter, TC contributions) in the context of climate variability and change. We show that TC contributions to extreme rainfall are substantially enhanced during active phases of the Madden–Julian Oscillation and by El Niño conditions (particularly over the eastern southwest Pacific region); this enhancement is primarily attributed to increased TC activity during these event periods. There are also indications of increasing intensities of TC-induced extreme rainfall events over the past few decades. A key part of this work involves development of sophisticated Bayesian regression models for individual island nations in order to better understand the synergistic relationships between TC-induced extreme rainfall and combinations of various climatic drivers that modulate the relationship. Such models are found to be very useful for not only assessing probabilities of TC- and non-TC induced extreme rainfall events but also evaluating probabilities of extreme rainfall for cases with different underlying climatic conditions. For example, TC-induced extreme rainfall probability over Samoa can vary from ~ 95 to ~ 75% during a La Niña period, if it coincides with an active or inactive phase of the MJO, and can be reduced to ~ 30% during a combination of El Niño period and inactive phase of the MJO. Several other such cases have been assessed for different island nations, providing information that have potentially important implications for planning and preparing for TC risks in vulnerable Pacific Island nations.


2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.


Weather ◽  
2006 ◽  
Vol 61 (7) ◽  
pp. 211-211
Author(s):  
Nick Baker

Sign in / Sign up

Export Citation Format

Share Document