scholarly journals Proximal Tubule–Derived Amphiregulin Amplifies and Integrates Profibrotic EGF Receptor Signals in Kidney Fibrosis

2019 ◽  
Vol 30 (12) ◽  
pp. 2370-2383 ◽  
Author(s):  
Eirini Kefaloyianni ◽  
Manikanda Raja Keerthi Raja ◽  
Julian Schumacher ◽  
Muthu Lakshmi Muthu ◽  
Vaishali Krishnadoss ◽  
...  

BackgroundSustained activation of EGF receptor (EGFR) in proximal tubule cells is a hallmark of progressive kidney fibrosis after AKI and in CKD. However, the molecular mechanisms and particular EGFR ligands involved are unknown.MethodsWe studied EGFR activation in proximal tubule cells and primary tubular cells isolated from injured kidneys in vitro. To determine in vivo the role of amphiregulin, a low-affinity EGFR ligand that is highly upregulated with injury, we used ischemia-reperfusion injury or unilateral ureteral obstruction in mice with proximal tubule cell–specific knockout of amphiregulin. We also injected soluble amphiregulin into knockout mice with proximal tubule cell–specific deletion of amphiregulin’s releasing enzyme, the transmembrane cell-surface metalloprotease, a disintegrin and metalloprotease-17 (ADAM17), and into ADAM17 hypomorphic mice.ResultsYes-associated protein 1 (YAP1)–dependent upregulation of amphiregulin transcript and protein amplifies amphiregulin signaling in a positive feedback loop. YAP1 also integrates signals of other moderately injury-upregulated, low-affinity EGFR ligands (epiregulin, epigen, TGFα), which also require soluble amphiregulin and YAP1 to induce sustained EGFR activation in proximal tubule cells in vitro. In vivo, soluble amphiregulin injection sufficed to reverse protection from fibrosis after ischemia-reperfusion injury in ADAM17 hypomorphic mice; injected soluble amphiregulin also reversed the corresponding protective proximal tubule cell phenotype in injured proximal tubule cell–specific ADAM17 knockout mice. Moreover, the finding that proximal tubule cell–specific amphiregulin knockout mice were protected from fibrosis after ischemia-reperfusion injury or unilateral ureteral obstruction demonstrates that amphiregulin was necessary for the development of fibrosis.ConclusionsOur results identify amphiregulin as a key player in injury-induced kidney fibrosis and suggest therapeutic or diagnostic applications of soluble amphiregulin in kidney disease.

2012 ◽  
Vol 303 (2) ◽  
pp. F266-F278 ◽  
Author(s):  
Šárka Lhoták ◽  
Sudesh Sood ◽  
Elise Brimble ◽  
Rachel E. Carlisle ◽  
Stephen M. Colgan ◽  
...  

Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca2+-independent phospholipase A2 (iPLA2β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250996
Author(s):  
Yasaman Ramazani ◽  
Noël Knops ◽  
Sante Princiero Berlingerio ◽  
Oyindamola Christiana Adebayo ◽  
Celien Lismont ◽  
...  

The calcineurin inhibitors (CNI) cyclosporine A and tacrolimus comprise the basis of immunosuppressive regimes in all solid organ transplantation. However, long-term or high exposure to CNI leads to histological and functional renal damage (CNI-associated nephrotoxicity). In the kidney, proximal tubule cells are the only cells that metabolize CNI and these cells are believed to play a central role in the origin of the toxicity for this class of drugs, although the underlying mechanisms are not clear. Several studies have reported oxidative stress as an important mediator of CNI-associated nephrotoxicity in response to CNI exposure in different available proximal tubule cell models. However, former models often made use of supra-therapeutic levels of tissue drug exposure. In addition, they were not shown to express the relevant enzymes (e.g., CYP3A5) and transporters (e.g., P-glycoprotein) for the metabolism of CNI in human proximal tubule cells. Moreover, the used methods for detecting ROS were potentially prone to false positive results. In this study, we used a novel proximal tubule cell model established from human allograft biopsies that demonstrated functional expression of relevant enzymes and transporters for the disposition of CNI. We exposed these cells to CNI concentrations as found in tissue of stable solid organ transplant recipients with therapeutic blood concentrations. We measured the glutathione redox balance in this cell model by using organelle-targeted variants of roGFP2, a highly sensitive green fluorescent reporter protein that dynamically equilibrates with the glutathione redox couple through the action of endogenous glutaredoxins. Our findings provide evidence that CNI, at concentrations commonly found in allograft biopsies, do not alter the glutathione redox balance in mitochondria, peroxisomes, and the cytosol. However, at supra-therapeutic concentrations, cyclosporine A but not tacrolimus increases the ratio of oxidized/reduced glutathione in the mitochondria, suggestive of imbalances in the redox environment.


2019 ◽  
Vol 30 (6) ◽  
pp. 929-945 ◽  
Author(s):  
Shinsuke Sakai ◽  
Takeshi Yamamoto ◽  
Yoshitsugu Takabatake ◽  
Atsushi Takahashi ◽  
Tomoko Namba-Hamano ◽  
...  

BackgroundEvidence of a protective role of autophagy in kidney diseases has sparked interest in autophagy as a potential therapeutic strategy. However, understanding how the autophagic process is altered in each disorder is critically important in working toward therapeutic applications.MethodsUsing cultured kidney proximal tubule epithelial cells (PTECs) and diabetic mouse models, we investigated how autophagic activity differs in type 1 versus type 2 diabetic nephropathy. We explored nutrient signals regulating starvation-induced autophagy in PTECs and used autophagy-monitoring mice and PTEC-specific autophagy-deficient knockout mice to examine differences in autophagy status and autophagy’s role in PTECs in streptozotocin (STZ)-treated type 1 and db/db type 2 diabetic nephropathy. We also examined the effects of rapamycin (an inhibitor of mammalian target of rapamycin [mTOR]) on vulnerability to ischemia-reperfusion injury.ResultsAdministering insulin or amino acids, but not glucose, suppressed autophagy by activating mTOR signaling. In db/db mice, autophagy induction was suppressed even under starvation; in STZ-treated mice, autophagy was enhanced even under fed conditions but stagnated under starvation due to lysosomal stress. Using knockout mice with diabetes, we found that, in STZ-treated mice, activated autophagy counteracts mitochondrial damage and fibrosis in the kidneys, whereas in db/db mice, autophagic suppression jeopardizes kidney even in the autophagy-competent state. Rapamycin-induced pharmacologic autophagy produced opposite effects on ischemia-reperfusion injury in STZ-treated and db/db mice.ConclusionsAutophagic activity in PTECs is mainly regulated by insulin. Consequently, autophagic activity differs in types 1 and 2 diabetic nephropathy, which should be considered when developing strategies to treat diabetic nephropathy by modulating autophagy.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Joshua G Travers ◽  
Fadia A Kamal ◽  
Michelle L Nieman ◽  
Michelle A Sargent ◽  
Jeffery D Molkentin ◽  
...  

Heart failure is a devastating disease characterized by chamber remodeling, interstitial fibrosis and reduced ventricular compliance. Cardiac fibroblasts are responsible for extracellular matrix homeostasis, however upon injury or pathologic stimulation, these cells transform to a myofibroblast phenotype and play a fundamental role in myocardial fibrosis and remodeling. Chronic sympathetic overstimulation induces excess signaling through G protein βγ subunits and ultimately the pathologic activation of G protein-coupled receptor kinase 2 (GRK2). We hypothesized that Gβγ-GRK2 inhibition plays an important role in the cardiac fibroblast to attenuate pathologic myofibroblast activation and cardiac remodeling. To investigate this hypothesis, mice were subjected to ischemia/reperfusion (I/R) injury and treated with the small molecule Gβγ-GRK2 inhibitor gallein. While animals receiving vehicle demonstrated a reduction in overall cardiac function as measured by echocardiography, mice treated with gallein exhibited nearly complete preservation of cardiac function and reduced fibrotic scar formation. We next sought to establish the cell specificity of this compound by treating inducible cardiomyocyte- and activated fibroblast-specific GRK2 knockout mice post-I/R. Although we observed modest restoration in cardiac function in cardiomyocyte-specific GRK2 null mice, treatment of these mice with gallein resulted in further protection against myocardial dysfunction following injury, suggesting a functional role in other cardiac cell types, including fibroblasts. Activated fibroblast-specific GRK2 knockout mice were also subjected to ischemia/reperfusion injury; these animals displayed preserved myocardial function and reduced collagen deposition compared to littermate controls following injury. Furthermore, systemic Gβγ-GRK2 inhibition by gallein did not appear to confer further protection over activated fibroblast-specific GRK2 ablation alone. In summary, these findings suggest a potential therapeutic role for Gβγ-GRK2 inhibition in limiting pathologic myofibroblast activation, interstitial fibrosis and heart failure progression.


2008 ◽  
Vol 295 (6) ◽  
pp. F1807-F1816 ◽  
Author(s):  
Osun Kwon ◽  
Wei-Wei Wang ◽  
Shane Miller

Renal solute clearances are reduced in ischemic acute kidney injury. However, the mechanisms explaining how solute clearance is impaired have not been clarified. Recently, we reported that cadaveric renal allografts exhibit maldistribution of organic anion transporter 1 (OAT1) in proximal tubule cells after ischemia and reperfusion, resulting in impairment of PAH clearance. In the present study, we characterized renal OAT1 in detail after ischemia-reperfusion using a rat model. We analyzed renal OAT1 using confocal microscopy with a three-dimensional reconstruction of serial optical images, Western blot, and quantitative real-time RT-PCR. OAT1 was distributed to basolateral membranes of proximal tubule cells in controls. With ischemia, OAT1 decreased in basolateral membrane, especially in the lateral membrane domain, and appeared diffusely in cytoplasm. After reperfusion following 60-min ischemia, OAT1 often formed cytoplasmic aggregates. The staining for OAT1 started reappearing in lateral membrane domain 1 h after reperfusion. The basolateral membrane staining was relatively well discernable at 240 h of reperfusion. Of note, a distinct increase in OAT1 expression was noted in vasculature early after ischemia and after reperfusion. The total amount of OAT1 protein expression in the kidney diminished after ischemia-reperfusion in a duration-dependent manner until 72 h, when they began to recover. However, even at 240 h, the amount of OAT1 did not reach control levels. The kidney tissues tended to show a remarkable but transient increase in mRNA expression for OAT1 at 5 min of ischemia. Our findings may provide insights of renal OAT1 in its cellular localization and response during ischemic acute kidney injury and recovery from it.


1998 ◽  
Vol 274 (5) ◽  
pp. F897-F905 ◽  
Author(s):  
Thomas J. Thekkumkara ◽  
Rochelle Cookson ◽  
Stuart L. Linas

Angiotensin II (ANG II), acting through angiotensin type 1A receptors (AT1A), is important in regulating proximal tubule salt and water balance. AT1A are present on apical (AP) and basolateral (BL) surfaces of proximal tubule epithelial cells (PTEC). The molecular mechanism of AT1A function in epithelial tissue is not well understood, because specific binding of ANG II to intact PTEC has not been found and because a number of isoforms of AT receptors are present in vivo. To overcome this problem, we developed a cell line from opossum kidney (OK) proximal tubule cells, which stably express AT1A( K d = 5.27 nM, Bmax = 6.02 pmol/mg protein). Characterization of nontransfected OK cells revealed no evidence of AT1A mRNA (reverse transcriptase-polymerase chain reaction analysis) or protein (125I-labeled ANG II binding studies) expression. In cells stably expressing AT1A, ANG II binding was saturable, reversible, and regulated by G proteins. Transfected receptors were coupled to increases in intracellular calcium and inhibition of cAMP. To determine the polarity of AT1A expression and function in proximal tubules, transfected cells were grown to confluence on membrane inserts under conditions that allowed selective access to AP or BL surfaces. AT1A were expressed on both AP ( K d = 8.7 nM, Bmax = 3.33 pmol/mg protein) and BL ( K d = 10.1 nM, Bmax = 5.50 pmol/mg protein) surfaces. Both AP and BL AT1Areceptors underwent agonist-dependent endocytosis (AP receptor: t 1/2 = 7.9 min, Ymax = 78.5%; BL receptor: t 1/2 = 2.1 min, Ymax = 86.3%). In cells transfected with AT1A, ANG II caused time- and concentration-dependent increases in transepithelial22Na transport (2-fold over control at 20 min) by increasing Na/H exchange. In conclusion, we have established a stable proximal tubule cell line that expresses AT1A on both AP and BL surfaces, undergoes agonist-dependent receptor endocytosis, and is functional, as evidenced by inhibition of cAMP and increases in cytosolic calcium mobilization and transepithelial sodium movement. This cell line should prove useful for understanding the molecular and biochemical regulation of AT1A expression and function in PTEC.


Sign in / Sign up

Export Citation Format

Share Document