scholarly journals Increased susceptibility to thiazide-induced hyponatremia in the elderly.

1994 ◽  
Vol 5 (4) ◽  
pp. 1106-1111
Author(s):  
B A Clark ◽  
R P Shannon ◽  
R M Rosa ◽  
F H Epstein

Hyponatremia is a common cause of morbidity in the elderly, and thiazide diuretics are often implicated. Eleven healthy young volunteers, eight healthy old volunteers, and five elderly patients with a history of thiazide-induced hyponatremia were studied to determine susceptibility to thiazide-induced hypoosmolality in age. Each of the healthy subjects ingested a water load (20 mL/kg) after 3 days of hydrochlorothiazide (HCTZ) (100 mg/day) or placebo. Although there were no differences in minimum Uosm between young and old, the healthy old had lower hourly free water clearances (CH2O) as compared with the young and a greater decline in serum osmolality in response to water loading (P < 0.05). HCTZ impaired minimum urine osmolality and CH2O and delayed recovery of serum osmolality after the water load in both healthy young and old (P < 0.005, placebo versus HCTZ), but the impairment in the latter two parameters was greater in the healthy elderly (P < 0.05, young versus old). Vasopressin levels were not different between healthy young and old (1.9 +/- 0.3 versus 2.0 +/- 1.0 pm with placebo; 3.0 +/- 0.7 versus 4.4 +/- 1.0 with HCTZ). Five of the young subjects were restudied after the addition of ibuprofen (400 mg thrice daily) to the thiazide and placebo regimens. Creatinine clearance was not changed, but free water clearance and serum osmolality after water loading were significantly reduced to a degree similar to that seen in the elderly subjects on the thiazide regimen (P < 0.05), suggesting an important role for renal prostaglandins in the defense against hyponatremia.

1988 ◽  
Vol 255 (6) ◽  
pp. R940-R945 ◽  
Author(s):  
M. Baerwolff ◽  
P. Bie

The possibility that small amounts of vasopressin (AVP) reduce water excretion without affecting solute excretion was investigated in conscious dogs. AVP was infused intravenously for 120 min at rates of 2 and 5 pg.min-1.kg body wt-1 during water diuresis elicited by a sustained water load of 2% body wt. During control experiments urine osmolality was constantly approximately 60 mosmol/kgH2O; during AVP infusions it increased by factors of 1.36 (P less than 0.01) and 2.12 (P less than 0.01), respectively, concomitant with 39 +/- 6 and 61 +/- 7% reductions in urine flow. Osmolar and free water clearances decreased significantly. Sodium excretion did not change; changes in potassium excretion during AVP were similar to those of the control series, i.e., a gradual decline. During AVP, 5 pg.min-1. kg-1, creatinine and urea clearances decreased (25 +/- 2 and 31 +/- 7%, respectively, both P less than 0.01). With the assumption of metabolic clearance rates of AVP of 15-40 ml.min-1.kg body wt-1, the increase in plasma AVP during the infusion of 2 pg.min-1.kg body wt-1 was 5-13 X 10(-14) M. It is concluded that small increments in plasma AVP may reduce glomerular filtration rate and that with increasing levels of AVP in plasma 1) reduction of free water clearance, 2) reduction in urea clearance, and 3) natriuresis-kaliuresis occur in that order. Apparently AVP cannot reduce water excretion without changing the rate of excretion of solutes.


1990 ◽  
Vol 259 (1) ◽  
pp. R53-R60 ◽  
Author(s):  
L. J. Andersen ◽  
J. L. Andersen ◽  
H. J. Schutten ◽  
J. Warberg ◽  
P. Bie

The renal responses to 120-min infusions of arginine vasopressin (AVP) were investigated in healthy volunteers undergoing water diuresis induced by an oral water load of 20 ml/kg body wt. AVP at 1 pg.min-1.kg-1 (approximately 10(-15) mol.min-1.kg-1) decreased urine flow (12.2 +/- 1.7 to 7.4 +/- 1.5 ml/min) and free water clearance (9.7 +/- 1.5 to 4.8 +/- 1.4 ml/min) and increased urine osmolality (Uosmol; 71 +/- 6 to 115 +/- 15 mosmol/kgH2O); 5 pg.min-1.kg-1 elicited pronounced antidiuresis (14.4 +/- 0.9 to 0.9 +/- 0.3 ml/min) with maximal Uosmol of 621 +/- 95 mosmol/kg. In response to 25 pg.min-1.kg-1, maximal Uosmol was 869 +/- 38 mosmol/kg. Responses developed gradually and stabilized within the 2nd h of infusion. AVP at 1 and 5 pg.min-1.kg-1 was without effect for at least 20 min. Only 25 pg.min-1.kg-1 caused a significant rise in plasma AVP (1.2 +/- 0.2-2.0 +/- 0.1 pg/ml), and with this dose sodium excretion decreased. The rates of K+ excretion, as well as plasma aldosterone and atrial natriuretic peptide concentrations, were unaffected by AVP. It is concluded that the human kidney is sensitive to changes in the rate of secretion of AVP of less than 1 pg.min-1.kg-1 and that the maximal change occurs after 1-2 h of constant infusion. It is estimated that the rate of infusion of AVP required to produce isosmolar urine during overhydration is approximately 3 pg.min-1.kg-1.


2008 ◽  
Vol 295 (5) ◽  
pp. F1295-F1300 ◽  
Author(s):  
Aleksander Krag ◽  
Flemming Bendtsen ◽  
Erling Bjerregaard Pedersen ◽  
Niels-Henrik Holstein-Rathlou ◽  
Søren Møller

The vasopressin analog terlipressin is believed to cause vasoconstriction selectively by V1 receptor stimulation. However, a possible antidiuretic effect by V2 receptor stimulation has never been ruled out. Twenty-two patients with ascites, including seven with refractory ascites, were included. The subjects were studied during a 400 ml/h oral water load before and after infusion of 2 mg of terlipressin (18 patients) or placebo infusion (4 patients). Effects on the V2 receptors were assessed by evaluating aquaporin (AQP)2 excretion, free water clearance (C[Formula: see text]), urine osmolality (Uosm), and fractional distal water excretion (DFeH2O). After terlipressin the excretion of AQP2 increased by 89% [144 ng/mmol creatinine, 95% confidence interval (CI) 73–214 ng/mmol creatinine, P = 0.001]. C[Formula: see text] decreased 1.05 ml/min (from 0.17 to −0.89 ml/min, P = 0.001), and DFeH2O decreased 37% (19 vs. 12; 95% CI 2–11, P = 0.01). Uosm increased by 27% (93 mosmol/kgH2O, 95% CI 23–164 mosmol/kgH2O, P = 0.02). Plasma sodium decreased 1.1 mmol/l ( P < 0.01). An increase in AQP2 excretion and a decrease in C[Formula: see text] and distal water excretion after terlipressin despite water loading is a clear indication of activation of the antidiuretic system (V2 receptor effect).


2005 ◽  
Vol 289 (4) ◽  
pp. F672-F678 ◽  
Author(s):  
Yung-Chang Chen ◽  
Melissa A. Cadnapaphornchai ◽  
Jianhui Yang ◽  
Sandra N. Summer ◽  
Sandor Falk ◽  
...  

The purpose of this study was to examine protein expression of renal aquaporins (AQP) and ion transporters in hypothyroid (HT) rats in response to an oral water load compared with controls (CTL) and HT rats replaced with l-thyroxine (HT+T). Hypothyroidism was induced by aminotriazole administration for 10 wk. Body weight, water intake, urine output, solute and urea excretion, and serum and urine osmolality were comparable among the three groups at the conclusion of the 10-wk treatment period. One hour after oral gavage of water (50 ml/kg body wt), HT rats demonstrated significantly less water excretion, higher minimal urinary osmolality, and decreased serum osmolality compared with CTL and HT+T rats. Despite the hyposmolality, plasma vasopressin concentration was elevated in HT rats. These findings in HT rats were associated with an increase in protein abundance of renal cortex AQP1 and inner medulla AQP2. AQP3, AQP4, and the Na-K-2Cl cotransporter were also increased. Moreover, 1 h following the oral water load, HT rats demonstrated a significant increase in the membrane-to-vesicle fraction of AQP2 by Western blot analysis. The defect in urinary dilution in HT rats was reversed by the V2 vasopressin antagonist OPC-31260. In conclusion, impaired urinary dilution in HT rats is primarily compatible with the nonosmotic release of vasopressin and increased protein expression of renal AQP2. The impairment of maximal solute-free water excretion in HT rats, however, appears also to involve diminished distal fluid delivery.


1999 ◽  
Vol 9 (3) ◽  
pp. 197-205
Author(s):  
L.L. Borger ◽  
S.L. Whitney ◽  
M.S. Redfern ◽  
J.M. Furman

Postural sway during stance has been found to be sensitive to moving visual scenes in young adults, children, and those with vestibular disease. The effect of visual environments on balance in elderly individuals is relatively unknown. The purpose of this study was to compare postural sway responses of healthy elderly to those of young subjects when both groups were exposed to a moving visual scene. Peak to peak, root mean squared, and mean velocity of the center of pressure were analyzed under conditions combining four moving scene amplitudes ( 2 . 5 ∘ , 5 ∘ , 7 . 5 ∘ , 10 ∘ ) and two frequencies of scene movement (0.1 Hz, 0.25 Hz). Each visual condition was tested with a fixed floor and sway referenced platform. Results showed that elderly subjects swayed more than younger subjects when experiencing a moving visual scene under all conditions. The elderly were affected more than the young by sway referencing the platform. The differences between the two age groups were greater at increased amplitudes of scene movement. These results suggest that elderly are more influenced by dynamic visual information for balance than the young, particularly when cues from the ankles are altered.


1977 ◽  
Vol 232 (4) ◽  
pp. F335-F340 ◽  
Author(s):  
J. D. Wallin ◽  
R. A. Kaplan

Mechanisms for the concentrating defect produced by fluoride were examined in the rat. Free-water clearance at all levels of delivery was normal after 5 days of chronic fluoride administration in the hereditary hypothalamic diabetes insipidus rat. In the Sprague-Dawley rats, during moderate fluoride administration (120 micronmol/kg per day), urine osmolality and cyclic AMP excretion decreased and urine volume increased, but after exogenous vasopressin, volume decreased and osmolality and cyclic AMP increased appropriately. During larger daily doses of fluoride (240 micronmol/kg per day) urinary osmolality and cyclic AMP decreased and volume increased, which was similar to the changes seen during lower fluoride dosages, but these parameters did not change after exogenous vasopressin. These data suggest that ascending limb chloride reabsorption is unaltered by fluoride administration; in the presence of sufficient fluoride, collecting tubular cells apparently do not generate cyclic AMP or increase permeability appropriately in response to vasopressin. The postulated defect is felt to be due to either a decrease in ATP availability or to a direct inhibitory effect of fluoride on the vasopressin-dependent cyclic AMP generating system.


1988 ◽  
Vol 254 (4) ◽  
pp. R641-R647 ◽  
Author(s):  
T. J. Vokes ◽  
N. M. Weiss ◽  
J. Schreiber ◽  
M. B. Gaskill ◽  
G. L. Robertson

Changes in osmoregulation during normal menstrual cycle were examined in 15 healthy women. In 10 women, studied repetitively during two consecutive menstrual cycles, basal plasma osmolality, sodium, and urea decreased by 4 mosmol/kg, 2 meq/l, and 0.5 mM, respectively (all P less than 0.02) from the follicular to luteal phase. Plasma vasopressin, protein, hematocrit, mean arterial pressure, and body weight did not change. In five other women, diluting capacity and osmotic control of thirst and vasopressin release were assessed in follicular, ovulatory, and luteal phases. Responses of thirst and/or plasma vasopressin, urine osmolality, osmolal and free water clearance to water loading, and infusion of hypertonic saline were normal and similar in the three phases. However, the plasma osmolality at which plasma vasopressin and urine osmolality were maximally suppressed as well as calculated osmotic thresholds for thirst and vasopressin release were lower by 5 mosmol/kg in the luteal than in the follicular phase. This lowering of osmotic thresholds for thirst and vasopressin release, which occurs in the luteal phase, is qualitatively similar to that observed in pregnancy and should be taken into account when studying water balance and regulation of vasopressin secretion in healthy cycling women.


PEDIATRICS ◽  
1985 ◽  
Vol 75 (3) ◽  
pp. 501-507
Author(s):  
Mario Usberti ◽  
Carmine Pecoraro ◽  
Stefano Federico ◽  
Bruno Cianciaruso ◽  
Bruna Guida ◽  
...  

Indomethacin, a potent prostaglandin synthesis inhibitor, has been proven to be effective in a number of tubular defects characterized by enhanced prostaglandin (namely, prostaglandin E2 (PGE2) production, but its mechanism of action is poorly understood. To elucidate further the mechanism(s) by which indomethacin reverses the abnormal tubular functions, five children with different tubular defects (nephrogenic diabetes insipidus, three cases; Fanconi syndrome, one case; and pseudohypoaldosteronism, one case) were treated with indomethacin. Indomethacin, 1 mg/kg every eight hours, was given for 1 week to all children and then was given chronically to four of the children who responded to the drug. Its use was suspended in a 10 year-old-boy with nephrogenic diabetes insipidus because it proved ineffective. To assess the site along the nephron where indomethacin affects the solute and water excretion, an acute water load study was performed in three responsive children before and during the treatment. Indomethacin did not significantly alter the glomerular filtration rate but was effective in reducing diuresis and levels of urinary sodium and potassium excretion. In the child with Fanconi syndrome, indomethacin was also effective in controlling the urinary loss of phosphate, urate, glucose, and bicarbonate. Results of the water load studies show that indomethacin decreases the delivery of solute from the proximal tubule, reduces the fractional free water clearance, and increases the urine-plasma osmolar ratio. The rate of urinary excretion of prostaglandin E2 was high in all five children; it decreased below normal values in four of them after 1 week of treatment. In the child with nephrogenic diabetes insipidus who did not respond to indomethacin therapy, prostaglandin E2 excretion decreased but the rate remained higher than normal. These results suggest that indomethacin induces retention of solute and water mainly through an enhanced proximal tubular reabsorption.


1988 ◽  
Vol 255 (6) ◽  
pp. R1064-R1068 ◽  
Author(s):  
K. L. Goetz ◽  
B. C. Wang ◽  
J. B. Madwed ◽  
J. L. Zhu ◽  
R. J. Leadley

Endothelin is a recently discovered vasoconstrictor peptide that is synthesized in certain vascular endothelial cells. We have identified the cardiovascular, renal, and hormonal responses that can be elicited in conscious dogs by intravenous administration of endothelin at rates of 10 and 30 ng.kg-1.min-1 for 60 min (0.24 and 0.72 nmol.kg-1/1-h infusion). Each dose of endothelin increased total peripheral resistance, arterial pressure, and left atrial pressure and decreased heart rate and cardiac output. Hematocrit increased by 4.8% (NS) and 22.9% (P less than 0.01) in response to the lower and higher infusion rates, respectively. Urinary sodium excretion, urine osmolality, and osmolar clearance decreased and free water clearance increased. The lower dose of endothelin decreased plasma norepinephrine and increased plasma atriopeptin. The higher dose increased plasma levels of vasopressin, renin, aldosterone, norepinephrine, epinephrine, and atriopeptin. The higher infusion rate of the peptide caused one or more brief vomiting episodes in four of five dogs. Although it is not yet known whether endothelin is a circulating hormone, it is clear that this peptide is capable of causing profound cardiovascular, renal, and endocrine alterations in conscious dogs. The possible relevance of these observations to physiological processes and to pathological conditions such as hypertension remains to be established.


Sign in / Sign up

Export Citation Format

Share Document