scholarly journals COMBUSTION AND EMISSION CHARACTERISTICS OF MUNICIPAL SEWAGE SLUDGE IN OXYGEN-ENRICHED BUBBLING FLUIDIZED BED

Author(s):  
Xiao-Ping Chen ◽  
Li-Feng Gu ◽  
Chang-Sui Zhao ◽  
Ai-Qiang Zhu ◽  
Xin Sun

With the rapid economic development and the increase in population in the whole world, the amount of municipal sewage (MS) is increasing and lead to a rapid increasing in amount of municipal sewage sludge (MSS). Combustion of municipal sewage sludge may be a viable solution for its disposal in some cases and so is its co-combustion with coal. Whereas significant information is available on NOx and N2O emissions characteristics of sludge and coal individually, not much has been reported on sludge/coal blends. In the present paper, investigations in NOx and N2O emission characteristics from circulation fluidized bed combustion of blends of municipal sewage sludge and coal were conducted in a 0.2MWth circulating fluidized bed test facility with cross section of 0.23×0.23m2 and height of 5.9m. Coal sample selected was a kind of lignite, while a kind of paper mill sludge was used as sludge sample. The influences of sludge/coal mixing rate, excess air ratio and second air ratio on NOx and N2O emission characteristics have been studied. Test results show that co-combustion of sewage sludge and coal is feasible. With the increasing in proportion of sludge of the sludge/coal blends, the temperatures in dense bed and freeboard decrease rapidly, and the emissions of NOx decrease while the emission of N2O increases obviously. With the increasing in excess air ratio, the emission concentrations of NOx and N2O increase. While with the increasing in secondary air ratio, the emission concentrations of NOx and N2O decrease.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2011 ◽  
Vol 383-390 ◽  
pp. 3799-3804
Author(s):  
Xiao Xu Fan ◽  
Lei Zhe Chu ◽  
Li Guo Yang

The fuel characteristics of municipal sewage sludge are suitable for dual fluidized bed(DFB) gasification, which can get middle calorific value gas through volatile pyrolysis, and reduce volume through char combustion. The hot test results of municipal sewage sludge on DFB rig were showen that the temperature distribution along combustor heigh is uniform, and the carbon content of fly ash is about 2~3%. In the experiment, with the increase of gasifier temperatrue, the more volatile of the sewage sludge was pyrolyzed. When the temperature of the gasifier reached 800°C, the calorific value of gas was 6.9MJ/Nm3; the emissions of SO2, NOx and HCl were appropriate to the standard. The leaching toxicity of heavy metal of the fly ash was lower than the discharge standard.


2020 ◽  
Vol 396 ◽  
pp. 122619 ◽  
Author(s):  
Yang Liu ◽  
Chunmei Ran ◽  
Asif Ali Siyal ◽  
Yongmeng Song ◽  
Zhihui Jiang ◽  
...  

2015 ◽  
Vol 30 (S1) ◽  
pp. S31-S35 ◽  
Author(s):  
B. Peplinski ◽  
C. Adam ◽  
B. Adamczyk ◽  
R. Müller ◽  
M. Michaelis ◽  
...  

For the first time evidence is provided that a nanocrystalline and stacking-disordered, chemically stabilized β-cristobalite form of AlPO4 occurs in a sewage sludge ash (SSA). This proof is based on a combined X-ray powder diffraction and X-ray fluorescence investigation of an SSA produced at a large-scale fluidized bed incineration facility serving a catching area with a population of 2 million. The structural and chemical characterization was carried out on ‘as received’ SSA samples as well as on solid residues remaining after leaching this SSA in sodium hydroxide solution. Thus, it was ascertained that the observed nanocrystalline and stacking-disordered cristobalite-like component belongs to the aluminum phosphate component of this SSA, rather than to its silicon dioxide component. In addition, a direct proof is presented that the chemically stabilized β-cristobalite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850°C), typical for fluidized bed incinerators.


2013 ◽  
Vol 28 (S2) ◽  
pp. S425-S435 ◽  
Author(s):  
B. Peplinski ◽  
C. Adam ◽  
B. Adamczyk ◽  
R. Müller ◽  
R. Schadrack ◽  
...  

Evidence is provided that the tridymite component observed in the X-ray diffraction patterns of some sewage sludge ashes (SSAs) should not be interpreted as the tridymite modification of SiO2 but as the tridymite form of AlPO4. This proof is based on a combined X-ray Powder Diffraction (XRD), X-ray fluorescence (XRF) and Mossbauer spectroscopy investigation of two SSAs produced at two fluidized bed incineration facilities, located in different municipalities and operated differently. The structural and chemical characterization was carried out on the ‘as received’ SSA samples as well as on the residues of these two SSAs pretreated by leaching in citric acid. In addition, direct proof is presented that the tridymite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850 °C) typical for fluidized bed incinerators.


Engineering ◽  
2013 ◽  
Vol 05 (01) ◽  
pp. 125-134 ◽  
Author(s):  
Beata Kowarska ◽  
Jerzy Baron ◽  
Stanisław Kandefer ◽  
Witold Zukowski

Author(s):  
A. T. Harris ◽  
S. A. Scott ◽  
J. S. Dennis ◽  
A. N. Hayhurst ◽  
J. F. Davidson

This paper gives the first measurements from a project investigating the gasification of dried sewage sludge in a laboratory scale, bubbling fluidized bed at atmospheric pressure. The aim of the work was to examine the reactions occurring in a fluidized bed gasifier rather than simply treat the reactor as a ‘black box’. Experiments were performed to investigate the rates of drying, devolatilisation, gasification and combustion. Thermogravimetric analysis, as well as batch fluidized bed experiments using mechanically dewatered, dried and pelletised municipal sewage sludges from different regions in the UK were performed. A comparison was made between the different samples of sludge and a low rank coal and softwood biomass. A distributed activation energy model (DAEM) for interpreting the kinetics of devolatilisation was also investigated. The model was able to reduce the results from several TGA experiments to a single curve characterised by a single parameter, the pre-exponential factor, A.


Sign in / Sign up

Export Citation Format

Share Document