Simulation based design for high speed sea lift with waterjets by high fidelity urans approach

2010 ◽  
Author(s):  
Tomohiro Takai
2015 ◽  
Author(s):  
Matteo Diez ◽  
Riccardo Broglia ◽  
Danilo Durante ◽  
Emilio F. Campana ◽  
Frederick Stern

The simulation based design (SBD) paradigm is replacing the traditional build-and-test design approach for naval vehicles, and high-fidelity simulations are required in order to guarantee the accuracy of the solution and ensure adequate design decisions. In real-world applications, all the relevant outputs are affected by uncertainty. This stems from operational and environmental parameters, as well as geometrical tolerances, and numerical/modelling errors. The estimate of the output uncertainty is required in order to provide the necessary confidence intervals of the relevant parameters.


Author(s):  
Thomas E. Doyle ◽  
David Musson ◽  
Jon-Michael J Booth

The skill of visualization is fundamental to the teaching and learning of engineering design and graphics. Implicit in any skill is the ability to improve with training and practice. This study examines visualization performance using three teaching modalities of a Freshmen Design and Graphics course: 1) Traditional, 2) Project based Dissection, and 3) Simulation based Design. The first and second modalities focused assessment on the part/assembly form, whereas the third modality transitioned the outcome expectations to understanding and function of mechanism design. A shift of focus from Traditional (Form) to Simulation (Function) was expected to positively effect visualization performance. Analogously, medical education and practice also require visualization and high-fidelity simulation has provided numerous positive outcomes for the practice of medicine. Comparison of a random population of 375 from each year indicated a decline in the average visualization scores. Further analysis revealed that highest 100 and 250 exam score populations show improvement in average scores with consistent variance. This paper will examine simulation based learning in medicine and engineering, present our findings on the comparison between teaching modalities, and discuss the reasons for the unexpected bifurcation of results.


Konstruktion ◽  
2017 ◽  
Vol 69 (07-08) ◽  
pp. 83-90
Author(s):  
Christian Brecher ◽  
Marcel Fey ◽  
Alexander Hassis

Inhalt: Übliche Kegelrollenlager zeichnen sich durch eine im Vergleich zu Spindellagern sehr hohe Steifigkeit und Tragfähigkeit aus. Gleichzeitig ist ihre Drehzahleignung deutlich geringer, was den Einsatz in Werkzeugmaschinen-Hauptspindeln zur Fräsbearbeitung in den meisten Fällen ausschließt. Mit dem hier vorgestellten zweistufigen Verfahren wird ein Kegelrollenlager für den Betrieb bei hohen Drehzahlen ausgelegt. Im ersten Schritt erfolgt die Auslegung der Makrogeometrie durch Lösung eines Optimierungsproblems. Zur Auslegung der Mikrogeometrie kommen in zweiten Schritt Methoden zur Kontaktberechnung und -beschreibung zur Anwendung.


2005 ◽  
Vol 49 (03) ◽  
pp. 159-175
Author(s):  
Daniele Peri ◽  
Emilio F. Campana

This work presents a simulation-based design environment for the solution of optimum ship design problems based on a global optimization (GO) algorithm that prevents the optimizer from being trapped into local minima. The procedure, illustrated in the framework of multiobjective optimization problems, makes use of high-fidelity, CPU-time-expensive computational models, including a free surface-capturing Reynolds-averaged Navier Stokes equation (RANSE) solver. The optimization process is composed of a global and a local phase. In the global stage of the search, a few computationally expensive simulations are needed for creating analytical approximations(i.e., surrogate models) of the objective functions. Tentative designs, created to explore the design space, are then evaluated with these inexpensive approximations. The more promising designs are then clustered and locally minimized and eventually verified with high-fidelity simulations. New exact values are used to improve the surrogate models, and repeated cycles of the algorithm are performed. A decision maker strategy is finally adopted to select the more interesting solution, and a final local refinement stage is performed by a gradient-based local optimization technique. A key point in the algorithm is the introduction of the surrogate models for the reduction of the overall time needed for the objective functions evaluation and their dynamic evolution and refinement along the optimization process. Moreover, an attractive alternative to adjoint formulations, the approximation management framework (AMF), based on a combined strategy that joins variable fidelity models and trust region techniques, is tested. Numerical examples are given demonstrating both the validity and usefulness of the proposed approach.


2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Viola Janse van Vuuren ◽  
Eunice Seekoe ◽  
Daniel Ter Goon

Although nurse educators are aware of the advantages of simulation-based training, some still feel uncomfortable to use technology or lack the motivation to learn how to use the technology. The aging population of nurse educators causes frustration and anxiety. They struggle with how to include these tools particularly in the light of faculty shortages. Nursing education programmes are increasingly adopting simulation in both undergraduate and graduate curricula. The aim of this study was to determine the perceptions of nurse educators regarding the use of high fidelity simulation (HFS) in nursing education at a South African private nursing college. A national survey of nurse educators and clinical training specialists was completed with 118 participants; however, only 79 completed the survey. The findings indicate that everyone is at the same level as far as technology readiness is concerned, however, it does not play a significant role in the use of HFS. These findings support the educators’ need for training to adequately prepare them to use simulation equipment. There is a need for further research to determine what other factors play a role in the use of HFS; and if the benefits of HFS are superior to other teaching strategies warranting the time and financial commitment. The findings of this study can be used as guidelines for other institutions to prepare their teaching staff in the use of HFS.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Erik Buhmann ◽  
Sascha Diefenbacher ◽  
Engin Eren ◽  
Frank Gaede ◽  
Gregor Kasieczka ◽  
...  

AbstractAccurate simulation of physical processes is crucial for the success of modern particle physics. However, simulating the development and interaction of particle showers with calorimeter detectors is a time consuming process and drives the computing needs of large experiments at the LHC and future colliders. Recently, generative machine learning models based on deep neural networks have shown promise in speeding up this task by several orders of magnitude. We investigate the use of a new architecture—the Bounded Information Bottleneck Autoencoder—for modelling electromagnetic showers in the central region of the Silicon-Tungsten calorimeter of the proposed International Large Detector. Combined with a novel second post-processing network, this approach achieves an accurate simulation of differential distributions including for the first time the shape of the minimum-ionizing-particle peak compared to a full Geant4 simulation for a high-granularity calorimeter with 27k simulated channels. The results are validated by comparing to established architectures. Our results further strengthen the case of using generative networks for fast simulation and demonstrate that physically relevant differential distributions can be described with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document