scholarly journals Kinetics of Thermolysis Process of High-Viscosity Ashalchinsk Oil

2018 ◽  
Vol 25 (3) ◽  
pp. 98
Author(s):  
M. Yu. Dolomatov ◽  
R. I. Khayrudinov ◽  
A. I. Bystrov
Keyword(s):  
2013 ◽  
Vol 745-746 ◽  
pp. 442-446 ◽  
Author(s):  
Rui Li Wang ◽  
Mo Zhu ◽  
Sheng Liu ◽  
Feng Wei Liu ◽  
Xiao Ze Jiang ◽  
...  

2,2-bis [4-(2-hydroxy-3-methacryloyloxypropoxy) pheny propane (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) have been commonly used as a viscous monomer and a reactive diluent in the organic phase of dental restorative composites, respectively. The purpose of addition of TEGDMA is mainly to decrease the high viscosity of Bis-GMA caused by hydrogen bonding between hydroxyl groups. However, some adverse effects will accompany with increased amounts of the TEGDMA, such as higher values of polymerization shrinkage, which is not undesirable for the clinical application. Therefore, substituting hydroxyl groups of Bis-GMA might be an appropriate and effective way to reduce the amount of diluents and weaken the accompanied adverse effects. This work focuses on the synthesis of a novel Bis-GMA derivate, substituting acetyl groups for hydroxyl groups in Bis-GMA. The viscosity of Bis-GMA characterized with rotational rheometer was significantly decreased from 820 Pa.s to 11 Pa.s by substitution of acetyl group, leading to the low amount of TEGDMA in resin matrix. Differential Scanning Calorimeter (DSC) was used for investigating the reaction kinetics of this novel monomer with different mass ratios of TEGDMA. The results suggested that the maximum conversion of the Ac-Bis-GMA can reach 88% while the corresponding value for Bis-GMA is 75%. Dental composites were prepared from 2,2-bis [4-(2-acetyl-3-methacryloyloxypropoxy) pheny propane (Ac-Bis-GMA) or Bis-GMA resin mixtures with TEGDMA filled with 70 wt% silica co-fillers. The results presented that dental composites prepared from new resin matrixes exhibited adequate mechanical properties.


2012 ◽  
Vol 33 (1) ◽  
pp. 31-41
Author(s):  
Jerzy Sęk ◽  
Mariola Błaszczyk ◽  
Michał Bartos

Hydrodynamic and kinetic study of an elution of a high viscosity liquid from the sand bed using eluent of low viscosity The study was aimed to determine the hydrodynamic of water seepage through a porous bed saturated with different amounts of high viscosity liquids. An attempt was made to describe the process of seepage through beds saturated with oils using the theory of outflow of a liquid from the tank. It was assumed that the discharge coefficient will represent changes of flow resistance during the process. It was found that the dependence of this factor on time is linear. In the second part of this work kinetics of the seepage process was investigated. Dependence of oil concentrations, eluted from the deposit with the flowing water, on time has been evaluated. Thanks to these studies it was possible to determine the effectiveness of an elution of high viscosity liquids from porous beds using water as the washing out liquid.


1977 ◽  
Vol 55 (23) ◽  
pp. 3955-3960 ◽  
Author(s):  
Brian B. Hasinoff

The kinetics of the reaction of ferroprotoporphyrin IX with CO have been studied in mixed glycerol–water solvents of high viscosity in order that the simultaneous influence of chemical activation and diffusion control of the reaction might be observed. Analyses of curved Arrhenius plots indicated that in the low temperature high viscosity limits the reaction is largely diffusion controlled. The deviation of the second order diffusion rate constants, from that predicted by simple theory for reaction between uniformly reactive spheres of equal radii, is a factor of 0.3 to 0.9, depending upon the solvent composition. A couple of other models for diffusion controlled reaction, ascribing these deviations to changes of steric requirements, were also examined.


2009 ◽  
Vol 1237 ◽  
Author(s):  
Natalia Noginova ◽  
Aleksandr Andreyev ◽  
Julia Noginova ◽  
Joseph C Hall ◽  
Vani Ramesh ◽  
...  

AbstractNuclear Magnetic Resonance (NMR) technique is a convenient method to monitor magnetic nanoparticles in different biomedical applications and observe changes induced by the particles. To better understand the specifics of the magnetic resonance and spin relaxation in the systems with magnetic nanoparticles, the NMR spectra and magnetization dynamics of the host protons are studied in the model systems of different viscosity and some biological systems in the presence of magnetic nanoparticles. The results confirmed that nanoparticles affect the proton relaxation kinetics of liquid solutions, changing the relaxation time (T1) significantly, whereas in systems of high viscosity the relaxation times are unchanged. The kinetics in intermediate systems is multi-exponential. A complicated picture is observed in biological systems, demonstrating contributions of liquid-like and solid-like behavior.


Sign in / Sign up

Export Citation Format

Share Document