scholarly journals Nodule-forming Sinorhizobium and arbuscular mycorrhizal fungi (AMF) improve the growth of Acacia farnesiana (Fabaceae): an alternative for the reforestation of the Cerro de la Estrella, Mexico

2019 ◽  
Vol 97 (4) ◽  
pp. 609-622 ◽  
Author(s):  
Selene Gómez-Acata ◽  
Enriqueta Amora-Lazcano ◽  
En Tao Wang ◽  
Flor N. Rivera-Orduña ◽  
Juan Carlos Cancino-Diaz ◽  
...  

Background: Cerro de la Estrella (CE) is a natural reserve in Mexico City that suffers from afforestation, and its restoration with Acacia farnesiana is being considered.Question: Will the nodule-forming rhizobia and arbuscular mycorrhizal fungi (AMF) associated with the CE soil support A. farnesiana growth?Study species: Acacia farnesiana (L.) Willd. (Fabaceae).Methods: Mycorrhizal fungi, nodule-forming rhizobia and physicochemical characteristics of the CE soil were studied to determine if they are suitable for improving the growth of Acacia farnesiana.Results: Four different families of AMF were found which generated 13 % mycorrhization with A. farnesiana. However, A. farnesiana from CE did not nodulate, suggesting the lack of native rhizobia. The CE soil has low fertility. Nodules of A. farnesiana were obtained from the soil in Ticuman, Morelos, and 66 rhizobia were isolated from them. Rhizobium isolates were individually added to A. farnesiana grown in the CE soil. Five of the 66 isolates yielded significant differences in shoot dry weight, shoot height, number of nodules, nodulation time and nitrogenase activity compared with the Sinorhizobium americanum CFNEI 156 control strain (p < 0.05). Three isolates were named as S. americanum ENCBTM1, ENCBTM31 and ENCBTM43, and last two as Sinorhizobium sp. ENCBTM34 and ENCBTM45.Conclusions: CE soil had low fertility and lacked specific rhizobia for A. farnesiana. The individual addition of S. americanum (ENCBTM1, ENCBTM31 or ENCBTM43) or Sinorhizobium sp. (ENCBTM34 or ENCBTM45) improved the growth of A. farnesiana.

1998 ◽  
Vol 28 (1) ◽  
pp. 150-153
Author(s):  
J N Gemma ◽  
R E Koske ◽  
E M Roberts ◽  
S Hester

Rooted cuttings of Taxus times media var. densiformis Rehd. were inoculated with the arbuscular mycorrhizal fungi Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe or Glomus intraradices Schenck and Smith and grown for 9-15 months in a greenhouse. At the completion of the experiments, leaves of inoculated plants contained significantly more chlorophyll (1.3-4.1 times as much) than did noninoculated plants. In addition, mycorrhizal plants had root systems that were significantly larger (1.3-1.4 times) and longer (1.7-2.1 times) than nonmycorrhizal plants, and they possessed significantly more branch roots (1.3-2.9 times). No differences in stem diameter and height or shoot dry weight were evident at the end of the experiments, although the number of buds was significantly greater in the cuttings inoculated with G. intraradices after 15 months.


2002 ◽  
Vol 82 (3) ◽  
pp. 272-278 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
A. Elmi ◽  
C. Costa ◽  
B. Ma ◽  
...  

Little attention has been paid to the effect of arbuscular mycorrhizal (AM) fungi on the uptake of nutrients that move mainly by mass flow. The objective of this study was to assess the possible contribution of indigenous AM fungi to the K, Ca and Mg nutrition of maize (Zea mays L.) as influenced by soil P levels and its impact on plant dry mass. The field experiment had a split plot design with four replicates. Treatments included soil fumigation status (fumigation and non-fumigation) and three levels of P fertilization (0, 60 and 120 kg P2O5 ha-1) in a loamy sand soil in 1997 and a fine sandy loam soil in 1998. Soil fumigati on with Basamid® was used to suppress indigenous AM fungi. Plants were sampled at four different growth stages (6-leaf stage, 10-leaf stage, tasseling and silking). Soil fumigation decreased shoot dry weight, but P fertilization increased shoot dry weight at most sampling times. When no P fertilizer was added, fumigation in the loamy sand soil reduced shoot K and Ca concentrations while, in contrast, in the fine sandy loam soil only Mg concentration was reduced by soil fumigation. The concentration of K in maize shoots was positively correlated (P < 0.05) with extraradicular hyphal length in both soils. The correlation between the abundance of extraradicular hyphae and the concentrations of Ca and Mg in maize shoots was significant only for soils where available Ca or Mg was relatively low. Arbuscular mycorrhizal fungi could increase corn biomass production and K, Ca and Mg uptake in soil low in these elements and low in P. These results indicate that the contribution of mycorrhizae to maize K, Ca and Mg nutrition can be significant in a field situation and that the extent of this contribution depends on the availability of these nutrients and of P in soils. Key words: Arbuscular mycorrhizal fungi, soil fumigation, extraradicular hyphae, uptake of K, Ca, and Mg, soil P levels, maize


2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Husna Husna ◽  
Faisal Danu Tuheteru ◽  
Asrianti Arif

Abstract. Husna, Tuheteru FD, Arif A. 2021. Arbuscular mycorrhizal fungi to enhance the growth of tropical endangered species Pterocarpus indicus and Pericopsis mooniana in post gold mine field in Southeast Sulawesi, Indonesia. Biodiversitas 22: 3844-3853. Gold mining activities contribute to the national economy, but have a serious impact on forest and environmental degradation and pose a threat to tree species in the tropics. Reforestation of post-gold mining with tropical legume tree species is threatened with extinction. Arbuscular mycorrhizal fungi are effective in conservation of endangered plants and restoration of degraded land. The objective of the study was to evaluate the effect of native AM Fungi inoculation on the growth of Pterocarpus indicus and Pericopsis mooniana in nurseries and post-gold mining fields. P. indicus and P. mooniana seedlings were inoculated with Glomus claroideum Schenk & Smith, Glomus coronatum Giovann., and mixed AMF (G. claroideum, G. coronatum). Uninoculated seedlings were used as control treatment, and they were maintained for 4 months under greenhouse conditions. After 4 months in greenhouse, seedlings were transferred to post-gold mine and planted for 4 months. The percentage of AMF colonization, plant growth, nutrient content and uptake of N, P, K, Fe, Mn were measured after 4 months both in the greenhouse and the field. The percentage of AMF colonization under greenhouse conditions in P. indicus and P. mooniana ranged 5.67-75.3% and 2.2-41.2%. All AMF colonization tended to have higher shoot height, leaf numbers and nodules, plant dry weight and N, P, K content under greenhouse conditions. Shoot height, stem diameter, leaf dry weight, N, P, K, Mn and Fe under field conditions had higher inoculated seedlings than control four months after planting. AMF could be used to conserve endangered tree species in post-gold mining reforestation in the tropics.


2013 ◽  
Vol 18 (1) ◽  
pp. 59 ◽  
Author(s):  
Sri Wilarso Budi ◽  
Fiona Christina

Coal powder waste application on low nutrient media is expected to be able to increase plant growth and to improve Arbuscular mycorrhizal fungi (AMF) development. The objective of this research was to determine the effect of coal waste powder on the growth of Anthocephallus cadamba Jack and AMF development grown on ultisol soil. Two factors in a completely randomised experimental design was conducted under greenhouse conditions and Duncan Multiple Range Test was used to analyse of the effect the treatment. The first factor was ultisol soil ammended with coal waste powder (control, soil amanded with coal waste 5%, soil amanded with coal waste 10% and soil amanded with coal waste 15%) and the second factor was AMF inoculation (uninoculated control, inoculated with Gigaspora margarita). Plant height, diameter, shoot dry weight, percentage of AMF colonization and nutrient uptake were measured in this experiment. Results of this study showed that coal amendment and AMF when applied separately significantly increased height, diameter, shoot dry weight, root dry weight and nutrient uptake of 12 weeks A. cadamba seedling, but when the coal waste powder and AMF were combined the plant growth parameters were lower than those applied separately but significantly higher than control. The application of coal waste powder or AMF in ultisol soil could increase A. cadamba growth and development.[How to Cite : Budi SW and F Christina. 2013. Coal Waste Powder Amendment and Arbuscular Mycorrhizal Fungi Enhance the Growth of Jabon (Anthocephalus cadamba Miq) Seedling in Ultisol Soil Medium. J Trop Soils, 18 (1): 59-66. doi: 10.5400/jts.2013.18.1.59][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.59]


Author(s):  
Kartika Megawati ◽  
Sri Wilarso Budi ◽  
Irdika Mansur

Arbuscular mycorrhizal fungi is a phylum of Glomeromycota. Arbuscular mycorrhizal fungi (AMF) propagule are spores, mycor-rhizal fungal hyphae and infected root fragments. The aims of this research were to analyze the effectivity of root inoculum of AMF to enhance teak (Tectona grandis Linn F.) seedling growth. The research was used complete randomized design (CRD)-split plot design. The main plot was root inoculum of AMF, sub plot is a media sterilization and media is not sterilized. The results showed that root inoculum of AMF and media effectively improved teak growth, especially in height, diameter, and shoot dry weight. Root inoculum of AMF is able to be used as the source of inoculum for the growth teak seedling. Fresh inoculum was found to be better than root inoculum stored at room temperature and root inoculum stored at refrigerator temperature (5°C). Storage of root inocu-lum at room temperature and refrigerator temperature (5°C) for two weeks decreased the effectiveness of inoculum. Type of mixed inoculum and inoculum of Acaulospora sp. root resulted in better growth compared with G. clarum root inoculum.


2016 ◽  
Vol 34 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A.O. ALECRIM ◽  
A.C. FRANÇA ◽  
E.A. SANTOS ◽  
S.D. MOREIRA ◽  
F.D.S. LEAL ◽  
...  

ABSTRACT The purpose of this paper was to evaluate the effects of the interference by Urochloa brizantha on coffee seedlings inoculated with arbuscular mycorrhizal fungi. A randomized block design and a 4 x 2 layout was used, where factor A was constituted by seedlings inoculated with Rhizophagus clarus, Claroideoglomus etunicatum and Dentiscutata heterogama, as well as some that were not inoculated, and factor B, constituted by plants in competition or alone. The sowing was conducted on washed sand to produce the coffee seedlings, which, during the matchstick stage, were transplanted into polyethylene bags, and inoculated when showing six pairs of leafs. Then, they were transplanted into pots where they were subjected to interference from two plants of U. brizantha for 90 days, during which time their growth and nutrient accumulation were evaluated on the leaves. As a result, an interaction between the following factors was observed: plant height, leaf area, shoot dry weight, dry weight for roots and P, Mg and Zn content in coffee seedlings. The damaging effect on the growth and P accumulation caused by the weed was reduced in coffee seedlings inoculated with mycorrhiza. Another conclusion was that the inoculation factor increases the competitive power of coffee seedlings.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 76
Author(s):  
Bukola Emmanuel ◽  
Olajire Fagbola ◽  
Oluwole Osonubi

Soil fertility management practices can influence colonisation of crops by arbuscular mycorrhizal fungi (AMF) and their abundance. The effects of different rates of nitrogen-phosphorus-potassium (NPK) fertiliser on AMF occurrence and colonisation were studied in maize/Centrosema pascuorum and sole maize systems. The NPK treatments were at rates (kg/ha): 0-10-30, 45-10-30, and 0-0-0 (control). The AMF spore populations were enumerated by direct counting under a microscope. Nutrient uptake was calculated as the product of nutrient concentration and shoot dry weight, and maize yield was estimated per ha. In the maize/Centrosema system, spore count, AMF colonisation, and nutrient uptake (except N) decreased with NPK 45-10-30 compared with 0-10-30, although maize yields were comparable at the two fertiliser levels. In the sole maize system, fertiliser application did not influence AMF spore abundance, but colonisation, nutrient uptake, and crop yield increased significantly (P < 0.05) with NPK 45-10-30. Maize yield increased by 1200% under the maize/Centrosema system compared with sole maize at NPK 0-10-30. The lowest values for all parameters were obtained under the control treatments. Colonisation of AMF, nutrient uptake, and maize yield were positively correlated. The maize/Centrosema system can maximise AMF benefits to increase yield and also reduce fertiliser input into agricultural soils, while application of N fertiliser is important to increase yield in the sole maize system.


Biocelebes ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
Wahyu Harso ◽  
Isna Isna ◽  
Yusran Yusran

Arbsucular mycorrhizal fungi promote plant growth by enhancing mineral uptake. Contribution degree of arbuscular mycorrhizal fungi to promote plant growth depend on species of plant-fungus association. The aim of this study was to compare the ability of three species of Glomus to promote maize plant growth. Maize plants were inoculated with 20 g inoculum of either Glomus deserticola, Glomus etunicatum, or Glomus clorum.  Inoculum was soil containing spore, hyphae and infected root. Maize plants without addition inoculum were also used as a control. Water availability in the soil as growing medium was maintained on 40% field capacity. The results showed that addition of inoculum from three species of Glomus increased average of maize plant shoot dry weight  although there was no statisticaly significant differences.  Maize plant inoculated with G. clorum had higher shoot dry weight than maize plant inoculated either with G. etunicatum or G. deserticola while root colonization by G. clorum was lowest.


1998 ◽  
Vol 29 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Marco A. Martins ◽  
Andre F. Cruz

An experiment under greenhouse conditions was carried out to evaluate the relative contribuition of arbuscular mycorrhizal fungi (AMF) in the process of nitrogen transfer from cowpea to maize plants, using the isotope 15N. Special pots divided in three sections (A, B and C), were constructed and a nylon mesh screen of two diameters: 40µm (which allowed the AMF hyphae to pass but not the plant roots) or 1µm (which acted as a barrier to AM hyphae and plant roots) was inserted between the sections B and C. Section A had 25.5 mg of N/kg using (15NH4)2SO4 as N source. Two cowpea seedlings inoculated with Rhizobium sp. were transplanted with their root systems divided between the sections A and B. Ten days later, 2 seeds of maize were sown into the section C which was inoculated with Glomus etunicatum. Thirty-five days after transplanting, the maize plants were harvested. AMF inoculation increased dry weight and 15N and P content of maize plant shoots. Direct transfer of 15N via AMF hyphae was 21.2%; indirect transfer of 15N mediated by AMF mycelium network, was 9.6%, and indirect transfer not mediated by AM mycelium network , was 69.2%.


2009 ◽  
Vol 19 (4) ◽  
pp. 809-812 ◽  
Author(s):  
Lea Corkidi ◽  
Jeff Bohn ◽  
Mike Evans

The insecticide bifenthrin is a synthetic pyrethroid required by regulation for the production of nursery crops to suppress the red imported fire ant (Solenopsis invicta) in Orange and Riverside counties in California. We conducted a greenhouse experiment to analyze the effects of different rates of bifenthrin on the growth and mycorrhizal colonization of ‘Silver Queen’ corn (Zea mays) inoculated with VAM 80®, a mycorrhizal inoculum with spores, hyphae, and root pieces colonized by Glomus spp., used to inoculate California native plants in containers. Corn was used because it is the standard indicator plant used for mycorrhizal inoculum potential assays and it is a good host for arbuscular mycorrhizal fungi propagation. The application of bifenthrin had no detrimental effects on mycorrhizal colonization of corn. There were no significant differences in the root length colonized by arbuscules, vesicles, or in the total percentage of mycorrhizal colonization obtained in the plants grown with the different bifenthrin rates 6 weeks after transplanting. However, there were significant interactions on the effects of bifenthrin and mycorrhizal colonization on plant growth. The addition of 12, 15, and 25 ppm of bifenthrin reduced corn biomass of nonmycorrhizal plants, but had no effect on the growth of mycorrhizal plants. There were no significant differences between the mycorrhizal and nonmycorrhizal plants grown with 0, 10, and 12 ppm of bifenthrin. In contrast, inoculation with VAM 80® increased the shoot dry weight of plants grown with 15 and 25 ppm of bifenthrin. This study showed that mycorrhizal colonization can be helpful to overcome some of the negative effects of bifenthrin on the growth of corn.


Sign in / Sign up

Export Citation Format

Share Document