scholarly journals Uji Efektivitas Inokulum Fungi Mikoriza Arbuskula Terhadap Pertumbuhan Bibit Jati (Tectona Grandis Linn. F)

Author(s):  
Kartika Megawati ◽  
Sri Wilarso Budi ◽  
Irdika Mansur

Arbuscular mycorrhizal fungi is a phylum of Glomeromycota. Arbuscular mycorrhizal fungi (AMF) propagule are spores, mycor-rhizal fungal hyphae and infected root fragments. The aims of this research were to analyze the effectivity of root inoculum of AMF to enhance teak (Tectona grandis Linn F.) seedling growth. The research was used complete randomized design (CRD)-split plot design. The main plot was root inoculum of AMF, sub plot is a media sterilization and media is not sterilized. The results showed that root inoculum of AMF and media effectively improved teak growth, especially in height, diameter, and shoot dry weight. Root inoculum of AMF is able to be used as the source of inoculum for the growth teak seedling. Fresh inoculum was found to be better than root inoculum stored at room temperature and root inoculum stored at refrigerator temperature (5°C). Storage of root inocu-lum at room temperature and refrigerator temperature (5°C) for two weeks decreased the effectiveness of inoculum. Type of mixed inoculum and inoculum of Acaulospora sp. root resulted in better growth compared with G. clarum root inoculum.

1998 ◽  
Vol 28 (1) ◽  
pp. 150-153
Author(s):  
J N Gemma ◽  
R E Koske ◽  
E M Roberts ◽  
S Hester

Rooted cuttings of Taxus times media var. densiformis Rehd. were inoculated with the arbuscular mycorrhizal fungi Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe or Glomus intraradices Schenck and Smith and grown for 9-15 months in a greenhouse. At the completion of the experiments, leaves of inoculated plants contained significantly more chlorophyll (1.3-4.1 times as much) than did noninoculated plants. In addition, mycorrhizal plants had root systems that were significantly larger (1.3-1.4 times) and longer (1.7-2.1 times) than nonmycorrhizal plants, and they possessed significantly more branch roots (1.3-2.9 times). No differences in stem diameter and height or shoot dry weight were evident at the end of the experiments, although the number of buds was significantly greater in the cuttings inoculated with G. intraradices after 15 months.


2002 ◽  
Vol 82 (3) ◽  
pp. 272-278 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
A. Elmi ◽  
C. Costa ◽  
B. Ma ◽  
...  

Little attention has been paid to the effect of arbuscular mycorrhizal (AM) fungi on the uptake of nutrients that move mainly by mass flow. The objective of this study was to assess the possible contribution of indigenous AM fungi to the K, Ca and Mg nutrition of maize (Zea mays L.) as influenced by soil P levels and its impact on plant dry mass. The field experiment had a split plot design with four replicates. Treatments included soil fumigation status (fumigation and non-fumigation) and three levels of P fertilization (0, 60 and 120 kg P2O5 ha-1) in a loamy sand soil in 1997 and a fine sandy loam soil in 1998. Soil fumigati on with Basamid® was used to suppress indigenous AM fungi. Plants were sampled at four different growth stages (6-leaf stage, 10-leaf stage, tasseling and silking). Soil fumigation decreased shoot dry weight, but P fertilization increased shoot dry weight at most sampling times. When no P fertilizer was added, fumigation in the loamy sand soil reduced shoot K and Ca concentrations while, in contrast, in the fine sandy loam soil only Mg concentration was reduced by soil fumigation. The concentration of K in maize shoots was positively correlated (P < 0.05) with extraradicular hyphal length in both soils. The correlation between the abundance of extraradicular hyphae and the concentrations of Ca and Mg in maize shoots was significant only for soils where available Ca or Mg was relatively low. Arbuscular mycorrhizal fungi could increase corn biomass production and K, Ca and Mg uptake in soil low in these elements and low in P. These results indicate that the contribution of mycorrhizae to maize K, Ca and Mg nutrition can be significant in a field situation and that the extent of this contribution depends on the availability of these nutrients and of P in soils. Key words: Arbuscular mycorrhizal fungi, soil fumigation, extraradicular hyphae, uptake of K, Ca, and Mg, soil P levels, maize


2013 ◽  
Vol 18 (1) ◽  
pp. 59 ◽  
Author(s):  
Sri Wilarso Budi ◽  
Fiona Christina

Coal powder waste application on low nutrient media is expected to be able to increase plant growth and to improve Arbuscular mycorrhizal fungi (AMF) development. The objective of this research was to determine the effect of coal waste powder on the growth of Anthocephallus cadamba Jack and AMF development grown on ultisol soil. Two factors in a completely randomised experimental design was conducted under greenhouse conditions and Duncan Multiple Range Test was used to analyse of the effect the treatment. The first factor was ultisol soil ammended with coal waste powder (control, soil amanded with coal waste 5%, soil amanded with coal waste 10% and soil amanded with coal waste 15%) and the second factor was AMF inoculation (uninoculated control, inoculated with Gigaspora margarita). Plant height, diameter, shoot dry weight, percentage of AMF colonization and nutrient uptake were measured in this experiment. Results of this study showed that coal amendment and AMF when applied separately significantly increased height, diameter, shoot dry weight, root dry weight and nutrient uptake of 12 weeks A. cadamba seedling, but when the coal waste powder and AMF were combined the plant growth parameters were lower than those applied separately but significantly higher than control. The application of coal waste powder or AMF in ultisol soil could increase A. cadamba growth and development.[How to Cite : Budi SW and F Christina. 2013. Coal Waste Powder Amendment and Arbuscular Mycorrhizal Fungi Enhance the Growth of Jabon (Anthocephalus cadamba Miq) Seedling in Ultisol Soil Medium. J Trop Soils, 18 (1): 59-66. doi: 10.5400/jts.2013.18.1.59][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.59]


2019 ◽  
Vol 97 (4) ◽  
pp. 609-622 ◽  
Author(s):  
Selene Gómez-Acata ◽  
Enriqueta Amora-Lazcano ◽  
En Tao Wang ◽  
Flor N. Rivera-Orduña ◽  
Juan Carlos Cancino-Diaz ◽  
...  

Background: Cerro de la Estrella (CE) is a natural reserve in Mexico City that suffers from afforestation, and its restoration with Acacia farnesiana is being considered.Question: Will the nodule-forming rhizobia and arbuscular mycorrhizal fungi (AMF) associated with the CE soil support A. farnesiana growth?Study species: Acacia farnesiana (L.) Willd. (Fabaceae).Methods: Mycorrhizal fungi, nodule-forming rhizobia and physicochemical characteristics of the CE soil were studied to determine if they are suitable for improving the growth of Acacia farnesiana.Results: Four different families of AMF were found which generated 13 % mycorrhization with A. farnesiana. However, A. farnesiana from CE did not nodulate, suggesting the lack of native rhizobia. The CE soil has low fertility. Nodules of A. farnesiana were obtained from the soil in Ticuman, Morelos, and 66 rhizobia were isolated from them. Rhizobium isolates were individually added to A. farnesiana grown in the CE soil. Five of the 66 isolates yielded significant differences in shoot dry weight, shoot height, number of nodules, nodulation time and nitrogenase activity compared with the Sinorhizobium americanum CFNEI 156 control strain (p < 0.05). Three isolates were named as S. americanum ENCBTM1, ENCBTM31 and ENCBTM43, and last two as Sinorhizobium sp. ENCBTM34 and ENCBTM45.Conclusions: CE soil had low fertility and lacked specific rhizobia for A. farnesiana. The individual addition of S. americanum (ENCBTM1, ENCBTM31 or ENCBTM43) or Sinorhizobium sp. (ENCBTM34 or ENCBTM45) improved the growth of A. farnesiana.


2016 ◽  
Vol 34 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A.O. ALECRIM ◽  
A.C. FRANÇA ◽  
E.A. SANTOS ◽  
S.D. MOREIRA ◽  
F.D.S. LEAL ◽  
...  

ABSTRACT The purpose of this paper was to evaluate the effects of the interference by Urochloa brizantha on coffee seedlings inoculated with arbuscular mycorrhizal fungi. A randomized block design and a 4 x 2 layout was used, where factor A was constituted by seedlings inoculated with Rhizophagus clarus, Claroideoglomus etunicatum and Dentiscutata heterogama, as well as some that were not inoculated, and factor B, constituted by plants in competition or alone. The sowing was conducted on washed sand to produce the coffee seedlings, which, during the matchstick stage, were transplanted into polyethylene bags, and inoculated when showing six pairs of leafs. Then, they were transplanted into pots where they were subjected to interference from two plants of U. brizantha for 90 days, during which time their growth and nutrient accumulation were evaluated on the leaves. As a result, an interaction between the following factors was observed: plant height, leaf area, shoot dry weight, dry weight for roots and P, Mg and Zn content in coffee seedlings. The damaging effect on the growth and P accumulation caused by the weed was reduced in coffee seedlings inoculated with mycorrhiza. Another conclusion was that the inoculation factor increases the competitive power of coffee seedlings.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 76
Author(s):  
Bukola Emmanuel ◽  
Olajire Fagbola ◽  
Oluwole Osonubi

Soil fertility management practices can influence colonisation of crops by arbuscular mycorrhizal fungi (AMF) and their abundance. The effects of different rates of nitrogen-phosphorus-potassium (NPK) fertiliser on AMF occurrence and colonisation were studied in maize/Centrosema pascuorum and sole maize systems. The NPK treatments were at rates (kg/ha): 0-10-30, 45-10-30, and 0-0-0 (control). The AMF spore populations were enumerated by direct counting under a microscope. Nutrient uptake was calculated as the product of nutrient concentration and shoot dry weight, and maize yield was estimated per ha. In the maize/Centrosema system, spore count, AMF colonisation, and nutrient uptake (except N) decreased with NPK 45-10-30 compared with 0-10-30, although maize yields were comparable at the two fertiliser levels. In the sole maize system, fertiliser application did not influence AMF spore abundance, but colonisation, nutrient uptake, and crop yield increased significantly (P < 0.05) with NPK 45-10-30. Maize yield increased by 1200% under the maize/Centrosema system compared with sole maize at NPK 0-10-30. The lowest values for all parameters were obtained under the control treatments. Colonisation of AMF, nutrient uptake, and maize yield were positively correlated. The maize/Centrosema system can maximise AMF benefits to increase yield and also reduce fertiliser input into agricultural soils, while application of N fertiliser is important to increase yield in the sole maize system.


Biocelebes ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
Wahyu Harso ◽  
Isna Isna ◽  
Yusran Yusran

Arbsucular mycorrhizal fungi promote plant growth by enhancing mineral uptake. Contribution degree of arbuscular mycorrhizal fungi to promote plant growth depend on species of plant-fungus association. The aim of this study was to compare the ability of three species of Glomus to promote maize plant growth. Maize plants were inoculated with 20 g inoculum of either Glomus deserticola, Glomus etunicatum, or Glomus clorum.  Inoculum was soil containing spore, hyphae and infected root. Maize plants without addition inoculum were also used as a control. Water availability in the soil as growing medium was maintained on 40% field capacity. The results showed that addition of inoculum from three species of Glomus increased average of maize plant shoot dry weight  although there was no statisticaly significant differences.  Maize plant inoculated with G. clorum had higher shoot dry weight than maize plant inoculated either with G. etunicatum or G. deserticola while root colonization by G. clorum was lowest.


2017 ◽  
Vol 1 (2) ◽  
pp. 119
Author(s):  
Luluk Setyaningsih

Effectiveness of mycorrhizal fungi inoculum Arbuskula Growth of seedling Plain Forest         Utilization of mycorrhizae in forestry are often constrained in the availability of inoculum mukoriza that not every moment can be obtained in sufficient quantities and in accordance with the type of crop and land acidity. It required effort to make the inoculant that can anticipate the condition. It has been developed inoculant arbuscular mycorrhizal fungi (AMF), that explores from various acidity land from under the stands of forest plants, namely inoculum R2, P2, N2 and C2-containing AMF of the genus Glomus sp. The study was conducted with 5 grams inokulasi AMF inoculum (equivalent to 15-30 spores) on seedling sengon (Paraserianthes falcataria), teak (Tectona grandis) and meranti (Shorea leprosula). Observations were carried out for 9 weeks by measuring the height and diameter growth of each week and dry biomass and shoot-root ratio at the end of observation. The statistical analysis was complete randomized with design 5 treatment of inoculant without comparing among species of forest plants seedlings. Results of variance analysis showed that after 9 weeks of observation, AMF inoculum treatments did not significantly affect height growth (p <0:40) and diameter (p <0.59) of sengon seedlings, but significant effect on diameter growth (p <0:09) and the growth of teak seedlings higher (p <0:06) and total dry weight (BKT) (p <0.07) seedling timber. C2 inoculant was effective to increase seedling height growth sengon up to 5% and meranti up to 22%. R2 inoculant increased height growth for seedlings of teak and meranti respectively 25% and 81%; Inokulan P2 increased by 23% and 81%, while the N2 inoculant increased by 21% and 53% of seedling growth of teak and meranti. Inoculant R2, P2 and N2 are recommended to be applied to seedlings of teak, and timber, while for legume crops such as sengon more advisable to use inoculants C2.Key words : inoculum, Arbuscular Mycorrhizal Fungi, Forest plants seedling  Abstrak          Pemanfaatan mikoriza di bidang kehutanan sering terkendala pada ketersediaan  inokulum mukoriza yang tidak setiap saat dapat diperoleh dalam jumlah cukup dan yang sesuai dengan jenis tanaman serta keasaman lahan.  Untuk itu diperlukan upaya untuk membuat inokulan yang dapat mengantisipasi kondisi tersebut.  Telah dikembangkan inokulan fungi mikoriza arbuskula (FMA) hasil eksplorasi dari berbagai keasaman lahan dari bawah tegakan tanaman hutan, yaitu inokulum R2, P2, N2 dan C2 yang mengandung FMA dari genus Glomus sp. Penelitian dilakukan dengan menginokulasikan sebanyak 5 gram inokulum FMA (setara 15-30 spora) tersebut pada semai sengon (Paraserianthes falcataria), jati (Tectona grandis) dan meranti (Shorea leprosula).  Pengamatan dilakukan selama 9 minggu dengan mengukur pertumbuhan tinggi dan diameter setiap minggu dan biomasa kering serta rasio pucuk-akar pada akhir pengamatan.  Penelitian dirancang secara acak lengkap dengan 5 perlakuan inokulan dengan tanpa membandingkan antar jenis semai tanaman hutan. Hasil analisa sidik ragam menunjukan bahwa setelah 9 minggu pengamatan, perlakuan inokulum FMA tidak berpengaruh nyata terhadap pertumbuhan tinggi (p<0.40) dan diameter (p<0.59) semai sengon, namun berpengaruh nyata pada pertumbuhan diameter (p<0.09) semai jati dan pertumbuhan tinggi (p<0.06) serta berat kering total (BKT) (p<0.07) semai meranti . Inokulan C2 efektif untuk peningkatan pertumbuhan tinggi semai sengon hingga 5% dan meranti hingga 22%.  Inokulan R2 mampu meningkatkan pertumbuhan tinggi semai jati dan meranti masing-masing sebesar 25% dan 81%;  Inokulan P2 meningkatkan sebesar 23% dan 81%; sedangkan inokulan N2 mampu meningkatkan sebesar 21% dan 53% terhadap pertumbuhan semai jati dan meranti.  Inokulan R2, P2 dan N2 lebih disarankan untuk diaplikasikan pada semai jati, dan meranti, sedangkan untuk tanaman legum seperti sengon lebih disarankan menggunakan inokulan C2.Kata kunci : Inokulum, Fungi Mikoriza arbuskula, Semai tanaman hutan


1998 ◽  
Vol 29 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Marco A. Martins ◽  
Andre F. Cruz

An experiment under greenhouse conditions was carried out to evaluate the relative contribuition of arbuscular mycorrhizal fungi (AMF) in the process of nitrogen transfer from cowpea to maize plants, using the isotope 15N. Special pots divided in three sections (A, B and C), were constructed and a nylon mesh screen of two diameters: 40µm (which allowed the AMF hyphae to pass but not the plant roots) or 1µm (which acted as a barrier to AM hyphae and plant roots) was inserted between the sections B and C. Section A had 25.5 mg of N/kg using (15NH4)2SO4 as N source. Two cowpea seedlings inoculated with Rhizobium sp. were transplanted with their root systems divided between the sections A and B. Ten days later, 2 seeds of maize were sown into the section C which was inoculated with Glomus etunicatum. Thirty-five days after transplanting, the maize plants were harvested. AMF inoculation increased dry weight and 15N and P content of maize plant shoots. Direct transfer of 15N via AMF hyphae was 21.2%; indirect transfer of 15N mediated by AMF mycelium network, was 9.6%, and indirect transfer not mediated by AM mycelium network , was 69.2%.


2009 ◽  
Vol 19 (4) ◽  
pp. 809-812 ◽  
Author(s):  
Lea Corkidi ◽  
Jeff Bohn ◽  
Mike Evans

The insecticide bifenthrin is a synthetic pyrethroid required by regulation for the production of nursery crops to suppress the red imported fire ant (Solenopsis invicta) in Orange and Riverside counties in California. We conducted a greenhouse experiment to analyze the effects of different rates of bifenthrin on the growth and mycorrhizal colonization of ‘Silver Queen’ corn (Zea mays) inoculated with VAM 80®, a mycorrhizal inoculum with spores, hyphae, and root pieces colonized by Glomus spp., used to inoculate California native plants in containers. Corn was used because it is the standard indicator plant used for mycorrhizal inoculum potential assays and it is a good host for arbuscular mycorrhizal fungi propagation. The application of bifenthrin had no detrimental effects on mycorrhizal colonization of corn. There were no significant differences in the root length colonized by arbuscules, vesicles, or in the total percentage of mycorrhizal colonization obtained in the plants grown with the different bifenthrin rates 6 weeks after transplanting. However, there were significant interactions on the effects of bifenthrin and mycorrhizal colonization on plant growth. The addition of 12, 15, and 25 ppm of bifenthrin reduced corn biomass of nonmycorrhizal plants, but had no effect on the growth of mycorrhizal plants. There were no significant differences between the mycorrhizal and nonmycorrhizal plants grown with 0, 10, and 12 ppm of bifenthrin. In contrast, inoculation with VAM 80® increased the shoot dry weight of plants grown with 15 and 25 ppm of bifenthrin. This study showed that mycorrhizal colonization can be helpful to overcome some of the negative effects of bifenthrin on the growth of corn.


Sign in / Sign up

Export Citation Format

Share Document