Potential distribution of Croton guatemalensis: a model with reproductive biology data

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Dulce María Pozo-Gómez ◽  
Carolina Orantes-García ◽  
María Silvia Sánchez-Cortéz ◽  
Tamara Rioja-Paradela ◽  
Arturo Carrillo-Reyes

Background: The inclusion of information on the phenology of any given species can significantly improve the resulting of potential distribution models. Scientific literature does not provide up-to-date information on the abiotic and biotic factors that determine the distribution of Croton guatemalensis, a species native to communities in south Mexico. For the first time, the potential distribution of C. guatemalensis was determined using a model which includes reproductive biology data. Questions: Which bioclimatic and climatic variables most contribute to the distribution of C. guatemalensis? Does reproductive biology data contribute significantly to the prediction of the species distribution? Studied species/Mathematical model: Croton guatemalensis/ Maximum Entropy Modeling Study area and dates: Chiapas, Mexico, January - December 2020. Methods: The MaxEnt 4.4.4 algorithm was used, incorporating 16 variables, including bioclimatic, climatic and elevation. In addition, a habitat suitability layer was built. Results: The model presented a precision of AUC = 0.964 ± 0.004. Eight variables contributed to explain 86.5 % of the potential distribution of the species. According to their contribution to the model, the most important were the seasonality of precipitation, habitat suitability, elevation and April solar radiation. The species was found in the physiographic regions Central America South Mountain Range Subprovince, Central Depression of Chiapas Discontinuity, and Altos de Chiapas Subprovince. Conclusions: The inclusion reproductive biology data of C. guatemalensis contributed to improve the model. This information allows the development of more effective management and conservation plans by identifying the precise regions in which the species is found.

2019 ◽  
Vol 374 (1788) ◽  
pp. 20190215 ◽  
Author(s):  
Sophie Monsarrat ◽  
Peter Novellie ◽  
Ian Rushworth ◽  
Graham Kerley

Setting appropriate conservation measures to halt the loss of biodiversity requires a good understanding of species' habitat requirements and potential distribution. Recent (past few decades) ecological data are typically used to estimate and understand species’ ecological niches. However, historical local extinctions may have truncated species–environment relationships, resulting in a biased perception of species' habitat preferences. This may result in incorrect assessments of the area potentially available for their conservation. Incorporating long-term (centuries-old) occurrence records with recent records may provide better information on species–environment relationships and improve the modelling and understanding of habitat suitability. We test whether neglecting long-term occurrence records leads to an underestimation of species’ historical niche and potential distribution and identify which species are more vulnerable to this effect. We compare outputs of species distribution models and niche hypervolumes built using recent records only with those built using both recent and long-term (post-1500) records, for a set of 34 large mammal species in South Africa. We find that, while using recent records only is adequate for some species, adding historical records in the analyses impacts estimates of the niche and habitat suitability for 12 species (34%) in our dataset, and that this effect is significantly higher for carnivores. These results show that neglecting long-term biodiversity records in spatial analyses risks misunderstanding, and generally underestimating, species' niches, which in turn may lead to ill-informed management decisions, with significant implications for the effectiveness of conservation efforts. This article is part of a discussion meeting issue ‘The past is a foreign country: how much can the fossil record actually inform conservation?’


2019 ◽  
Author(s):  
Sophie Monsarrat ◽  
Peter Novellie ◽  
Ian Rushworth ◽  
Graham Kerley

ABSTRACTSetting appropriate conservation measures to halt the loss of biodiversity requires a good understanding of species’ habitat requirements and potential distribution. Recent (past few decades) ecological data are typically used to estimate and understand species’ ecological niche. However, historical local extinctions may have truncated species-environment relationships, resulting in a biased perception of species’ habitat preferences. This may result in incorrect assessments of the area potentially available for their conservation. Incorporating long-term (centuries-old) occurrence records with recent records may provide better information on species-environment relationships and improve the modeling and understanding of habitat suitability. We test whether neglecting long-term occurrence records leads to an underestimation of species’ historical niche and potential distribution and identify which species are more vulnerable to this effect. We compare outputs of species distribution models and niche hypervolumes built using recent records only with those built using both recent and long-term (post-1500) records, for a set of 34 large mammal species in South Africa. We find that, while using recent records only is adequate for some species, adding historical records in the analyses impacts estimates of the niche and habitat suitability for fourteen species (41%) in our dataset, and that this effect is significantly higher for carnivores. These results show that neglecting long-term biodiversity records in spatial analyses risks misunderstanding, and generally underestimating, species’ niche, which in turn may lead to ill-informed management decisions, with significant implications for the effectiveness of conservation efforts.


ZooKeys ◽  
2020 ◽  
Vol 1005 ◽  
pp. 103-132
Author(s):  
Jesús Lenin Lara-Galván ◽  
Juan Felipe Martínez-Montoya ◽  
José Jesús Sigala-Rodríguez ◽  
Citlalli Edith Esparza-Estrada ◽  
Octavio César Rosas-Rosas ◽  
...  

Mexico is home to a large number of reptile species and has one of the greatest diversities of venomous snakes, among which the rattlesnakes pertaining to the Crotalus genus stand out. Out of more than 40 species in the country, nine are found in Zacatecas: C. aquilus, C. atrox, C. basiliscus, C. lepidus, C. molossus, C. polystictus, C. pricei, C. scutulatus and C. willardi. Although these reptiles are important, due to their relevance in terms of ecology, cultural use and public health, their conservation is impacted by multiple factors, such as habitat fragmentation and indiscriminate killing. Thus, most species within this genus are found in some type of risk category at both the national and international level. The purpose of this study was to determine the potential distribution and diversity of rattlesnakes at the municipal level in the understudied state of Zacatecas. To do this, we analyzed and described the global distribution of nine rattlesnake species by building species distribution models, which determined their potential distribution based on a set of ecological variables and presence records. The resulting models were used to assess the diversity of rattlesnake species potentially present in each municipality within the state. Thirty-nine (67.24 %) out of fifty-eight municipalities registered at least one rattlesnake species. Fresnillo, Sombrerete and Valparaíso were some of the municipalities showing greatest diversity. Moreover, C. atrox, C. lepidus, C. molossus and C. scutulatus were the most widely found species in the state. On the other hand, C. basiliscus, C. polystictus, C. pricei and C. willardi were rarely spotted and so, information on their distribution patterns within Zacatecas is limited. Finally, the areas having the largest potential for the distribution of these species were defined. These findings should make field work much more time- and cost-effective, facilitating the collection of in situ data that are useful for management and conservation plans of these species in Zacatecas.


Nativa ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 100
Author(s):  
Thaís Ribeiro Costa ◽  
Cristiane Coelho De Moura ◽  
Evandro Luiz Mendonça Machado ◽  
Marcelo Leandro Bueno

O objetivo deste trabalho foi determinar a distribuição potencial da espécie Lychnophora pohlli em Minas Gerais durante as flutuações climáticas no Quaternário, além de identificar a área de abrangência da espécie em Unidades de Conservação. O algoritmo Maxent foi selecionado para relacionar a ocorrência da espécie com variáveis bioclimáticas que refletem diferentes condições de temperatura, precipitação e sazonalidade. Os modelos foram validados por meio do índice AUC e a influência das variáveis sobre a distribuição das espécies foi avaliada por meio do teste Jackknife. Os mapas resultantes prevêem áreas de ocorrência restrita para a espécie, ocorrendo em uma porção da Serra do Espinhaço. Os modelos evidenciaram uma redução de área ambientalmente adequada da espécie do Holoceno para o período atual e aumento considerável dos dias atuais para o futuro. Os modelos apresentaram excelente desempenho, visto que os índices AUC variaram entre 0,971 a 0,997. A modelagem de distribuição de espécies mostrou-se bastante útil em fornecer contribuições para o estudo de questões ecológicas sobre a distribuição da espécie, além de ser uma importante ferramenta para planos de conservação da biodiversidade.  Recomenda-se o uso de outras variáveis microclimáticas que possam contribuir com a predição e interpretação da distribuição geográfica de espécies endêmicas.Palavra-chave: espécies Ameaçadas, Maxent, modelo de distribuição potencial, unidades de conservação. PREDICTIVE MODELING OF THE SPECIES LYCHNOPHORA POHLII SCH. BIP, IN THE STATE OF MINAS GERAIS ABSTRACT:The objective of this work was to determine the potential distribution of Lychnophora pohlli in Minas Gerais during climatic fluctuations in the Quaternary, in addition to identifying the area of coverage of the species in Conservation Units. The Maxent algorithm was selected to relate the occurrence of the species with bioclimatic variables that reflect different temperature, precipitation and seasonality conditions. The models were validated by AUC index and the influence of the variables on the distribution of the species were evaluated by the Jackknife test. The resulting maps provide areas of restricted occurrence for the species, occurring in a portion of the Serra do Espinhaço. The models showed environmentally adequate reduction of the Holocene species for the current period and a considerable increase from the present  to the future. The models showed excellent performance, since the AUC values ranged from 0,971 - 0,997. The modeling of species distribution has proved to be useful in providing contributions to the study of ecological issues on the species distribution, besides being an important tool for biodiversity conservation plans. It is recommended to use other microclimatic variables that may contribute to the prediction and interpretation of the geographic distribution of endemic species.Keywords: conservation units, endangered species, Maxent, potential distribution models. DOI:


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Mohammed A. Dakhil ◽  
Marwa Waseem A. Halmy ◽  
Walaa A. Hassan ◽  
Ali El-Keblawy ◽  
Kaiwen Pan ◽  
...  

Climate change is an important driver of biodiversity loss and extinction of endemic montane species. In China, three endemic Juniperus spp. (Juniperuspingii var. pingii, J.tibetica, and J.komarovii) are threatened and subjected to the risk of extinction. This study aimed to predict the potential distribution of these three Juniperus species under climate change and dispersal scenarios, to identify critical drivers explaining their potential distributions, to assess the extinction risk by estimating the loss percentage in their area of occupancy (AOO), and to identify priority areas for their conservation in China. We used ensemble modeling to evaluate the impact of climate change and project AOO. Our results revealed that the projected AOOs followed a similar trend in the three Juniperus species, which predicted an entire loss of their suitable habitats under both climate and dispersal scenarios. Temperature annual range and isothermality were the most critical key variables explaining the potential distribution of these three Juniperus species; they contribute by 16–56.1% and 20.4–38.3%, respectively. Accounting for the use of different thresholds provides a balanced approach for species distribution models’ applications in conservation assessment when the goal is to assess potential climatic suitability in new geographical areas. Therefore, south Sichuan and north Yunnan could be considered important priority conservation areas for in situ conservation and search for unknown populations of these three Juniperus species.


2015 ◽  
Author(s):  
Jose Luis Passos Cordeiro ◽  
José MV Fragoso ◽  
Danielle Crawshaw ◽  
Luiz Flamarion B Oliveira

The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a rigorously derived distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.


2018 ◽  
Vol 27 (9) ◽  
pp. 2425-2441 ◽  
Author(s):  
Sonia Smeraldo ◽  
Mirko Di Febbraro ◽  
Luciano Bosso ◽  
Carles Flaquer ◽  
David Guixé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document