scholarly journals Potential distribution of Notopterygium incisum Ting ex H. T. Chang and its predicted responses to climate change based on a comprehensive habitat suitability model

2020 ◽  
Vol 10 (6) ◽  
pp. 3004-3016 ◽  
Author(s):  
Zefang Zhao ◽  
Yanlong Guo ◽  
Haiyan Wei ◽  
Qiao Ran ◽  
Jing Liu ◽  
...  
Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 530 ◽  
Author(s):  
Gonzalo Vargas-Piedra ◽  
Ricardo David Valdez-Cepeda ◽  
Armando López-Santos ◽  
Arnoldo Flores-Hernández ◽  
Nathalie S. Hernández-Quiroz ◽  
...  

Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub species distributed throughout the Chihuahuan Desert in northern Mexico and southern of the United States of America. Candelilla has an economic importance due to natural wax it produces. The economic importance and the intense harvest of the wax from candelilla seems to gradually reduce the natural populations of this species. The essence of this research was to project the potential distribution of candelilla populations under different climate change scenarios in its natural distribution area in North America. We created a spatial database with points of candelilla presence, according to the Global Biodiversity Information Facility (GBIF). A spatial analysis to predict the potential distribution of the species using Maxent software was performed. Thirteen of 19 variables from the WorldClim database were used for two scenarios of representative concentration pathways (RCPs) (4.5 as a conservative and 8.5 as extreme). We used climate projections from three global climate models (GCMs) (Max Planck institute, the Geophysical Fluid Dynamics Laboratory and the Met Office Hadley), each simulating the two scenarios. The final predicted distribution areas were classified in five on-site possible candelilla habitat suitability categories: none (< 19%), low (20–38%), medium (39–57%), high (58–76%) and very high (> 77%). According to the area under the curve (0.970), the models and scenarios used showed an adequate fit to project the current and future distribution of candelilla. The variable that contributed the most in the three GCMs and the two RCPs was the mean temperature of the coldest quarter with an influence of 45.7% (Jackknife test). The candelilla’s distribution area for North America was predicted as approximately 19.1 million hectares under the current conditions for the high habitat suitability; however, the projection for the next fifty years is not promising because the GCMs projected a reduction of more than 6.9 million hectares using either the conservative or extreme scenarios. The results are useful for conservation of the species in the area with vulnerable wild populations, as well as for the selection of new sites suitable for the species growth and cultivation while facing climate change.


2011 ◽  
Vol 57 (5) ◽  
pp. 648-654 ◽  
Author(s):  
Jim Graham ◽  
Catherine Jarnevich ◽  
Nick Young ◽  
Greg Newman ◽  
Thomas Stohlgren

Abstract Habitat suitability models have been used to predict the present and future potential distribution of a variety of species. Eurasian tree sparrows Passer montanus, native to Eurasia, have established populations in other parts of the world. In North America, their current distribution is limited to a relatively small region around its original introduction to St. Louis, Missouri. We combined data from the Global Biodiversity Information Facility with current and future climate data to create habitat suitability models using Maxent for this species. Under projected climate change scenarios, our models show that the distribution and range of the Eurasian tree sparrow could increase as far as the Pacific Northwest and Newfoundland. This is potentially important information for prioritizing the management and control of this non-native species.


Author(s):  
Yuan Gao ◽  
Zhibin He ◽  
Xi Zhu ◽  
Longfei Chen ◽  
Jun Du ◽  
...  

The Qinghai-Tibet Plateau in China is a region strongly impacted by climate change, yet its effects are unknown on the keystone endemic forest species, P. crassifolia. Understanding changes in potential distribution and habitat suitability of P. crassifolia forest with the climate change will contribute to water conservation, forest management, and ecological protection in the upper reaches of the Yellow River. A total of 129 records of species distribution data and 19 environmental variables were chosen for modeling. The MaxEnt model was used to analyze the main environmental factors affecting the potential distribution of P. crassifolia in two periods (2050s and 2070s) and four representative emission pathways (RCP2.6, RCP4.5, RCP6.0 and RCP 8.5). The main results are follows: (1) the most important environmental variables affecting distribution of P. crassifolia and percentage variance explained were: altitude (41.85%), precipitation of driest month (19.76%), slope (12.35%), annual precipitation (6.56%), precipitation of wettest month (5.73%), and precipitation of warmest quarter (5.12%), (2) habitat suitability of P. crassifolia shifted to the northwest and into high-altitude areas under climate change scenarios, but its core distribution areas were concentrated in northeastern Qinghai-Tibet Plateau, Qilian Mountains, southern Ningxia, and Helan Mountains, (3) total area of potential suitable habitat of P. crassifolia will change significantly in the future, and change of habitat area of not suitable, low, moderate, and high suitability exceed 60%.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4618 ◽  
Author(s):  
Andrea González-Fernández ◽  
Javier Manjarrez ◽  
Uri García-Vázquez ◽  
Maristella D’Addario ◽  
Armando Sunny

Land use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position, and climate. It is also one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the important environmental variables (considering climate, topography, and land use) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modeling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again using only the most important variables and projected these models to the future considering a middle-moderate climate change scenario (rcp45), and land use and vegetation variables for the year 2050 (generated according to land use changes that occurred between years 2002 and 2011). Arid vegetation had an important negative effect on habitat suitability for all species, and minimum temperature of the coldest month was important for four of the five species. Thamnophis cyrtopsis was the species with the lowest tolerance to minimum temperatures. The maximum temperature of the warmest month was important for T. scalaris and T. cyrtopsis. Low percentages of agriculture were positive for T. eques and T. melanogaster but, at higher values, agriculture had a negative effect on habitat suitability for both species. Elevation was the most important variable to explain T. eques and T. melanogaster potential distribution while distance to Abies forests was the most important variable for T. scalaris and T. scaliger. All species had a high proportion of their potential distribution in the TMVB. However, according to our models, all Thamnophis species will experience reductions in their potential distribution in this region. T. scalaris will suffer the biggest reduction because this species is limited by high temperatures and will not be able to shift its distribution upward, as it is already present in the highest elevations of the TMVB.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Mohammed A. Dakhil ◽  
Marwa Waseem A. Halmy ◽  
Walaa A. Hassan ◽  
Ali El-Keblawy ◽  
Kaiwen Pan ◽  
...  

Climate change is an important driver of biodiversity loss and extinction of endemic montane species. In China, three endemic Juniperus spp. (Juniperuspingii var. pingii, J.tibetica, and J.komarovii) are threatened and subjected to the risk of extinction. This study aimed to predict the potential distribution of these three Juniperus species under climate change and dispersal scenarios, to identify critical drivers explaining their potential distributions, to assess the extinction risk by estimating the loss percentage in their area of occupancy (AOO), and to identify priority areas for their conservation in China. We used ensemble modeling to evaluate the impact of climate change and project AOO. Our results revealed that the projected AOOs followed a similar trend in the three Juniperus species, which predicted an entire loss of their suitable habitats under both climate and dispersal scenarios. Temperature annual range and isothermality were the most critical key variables explaining the potential distribution of these three Juniperus species; they contribute by 16–56.1% and 20.4–38.3%, respectively. Accounting for the use of different thresholds provides a balanced approach for species distribution models’ applications in conservation assessment when the goal is to assess potential climatic suitability in new geographical areas. Therefore, south Sichuan and north Yunnan could be considered important priority conservation areas for in situ conservation and search for unknown populations of these three Juniperus species.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


Sign in / Sign up

Export Citation Format

Share Document