scholarly journals Study of rare earth elements in the coals of the Shubarkol deposit

Author(s):  
A. Amangeldykyzy ◽  
◽  
A. N. Kopobayeva ◽  
N. S. Askarova ◽  
D.S. Ozhigin ◽  
...  

The work studies mineralogical and geochemical features of the Jurassic coals of the Shubarkol deposit. The samples were examined using the method of scanning electron microscopy (SEM-EDX) Hitachi S-3400N, which was carried out at the Uranium Geology Research and Development Center at the Department of Geoecology and Geochemistry of TPU. Coal geochemistry was studied by instrumental neutron activation analysis (INAA) at the nuclear geochemical laboratory of the Department of Geoecology and Geochemistry of National Research Tomsk Polytechnic University (TPU). The choice of this object of study was determined by the tasks of research including the study of the patterns of accumulation of abnormal concentrations of REE, the effect of various factors of the geological environment on the levels of their accumulation in coals, as well as the conditions of its concentration and forms of occurrence in coals to expand the mineral resource base of Kazakhstan for rare earth elements. According to the results of scanning microscopic analysis, aluminosilicates, sulfides and sulfates with inclusions of microparticles of rare and rare earth elements were found in the composition of the Shubarkol deposit coals. According to the INNA results, abnormal concentrations of Sc, Ta, Nb, Hf, Zr, Ba, Sr, Ce and REE were found. Weathering processes led mainly to the loss and redistribution of REE in the coal seams of the Shubarkol deposit, which in turn led to increasing the content of rare earth elements from the bottom up the section. As a result of the action of multiple processes, increased concentrations of rare earth metals, mainly of the yttrium group, were formed. The absence of negative europium anomaly was determined, which confirms the original rocks composition peculiarity. The maximum contents of rare-earth metals are confined to weathered coals; for the medium-heavy group (Nd, PM, Sm, Eu), they are almost a hundredfold higher than the clarke in the upper continental crust. The tenfold excess of the clarke for elements from Gd to Lu was found in clayey sandstones and siltstones; for the rest of the rocks of the deposit the excess over the clarke is significantly lower. It was found that the coals of the deposit belong to the H-type and L-type of REE distribution. During the formation of oxidized H-type coals, clayey matter of terrigenous ash predominated as a carrier of REE, while unoxidized L-type coals were formed with the introduction of REE into the coal accumulation basin mainly in the composition of clay minerals and LREE-phosphates. Here the main source of REE was apparently the weathering crust over acidic rocks.

2020 ◽  
Vol 34 (2) ◽  
pp. 183-194
Author(s):  
Alexandre Chaves ◽  
Luiz Knauer

The hematitic phyllite is a rock that occurs in the São João da Chapada and Sopa-Brumadinho formations of the southern Espinhaço range. Its origin is widely discussed in papers on Espinhaço, but there is no consensus on its protolith due to certain characteristics of the lithotype, such as its chemical composition and textural features. The pattern of rare earth elements strongly enriched [(La/Yb)N 6.80-17.68], with light rare earth elements [(La/Sm)N 2.54-4.83] richer than heavy ones [(Gd/Yb)N 1.28-3,32], suggests that the protolith was an alkaline volcanic rock formed during the rift that generated the Espinhaço basin. The major elements indicate that the alkaline rock met weathering processes, becoming a regolith. During the Brasiliano metamorphism, it finally became hematitic phyllite. Other characteristics of the lithotype, such as the presence of sericite-bearing rounded parts (possibly formed by alteration and deformation of leucite crystals) and the preservation of igneous layering, suggest a potassic volcanic origin for hematitic phyllite. In diagram that allows identifying altered and metamorphic volcanic rocks, the investigated samples have composition similar to a feldspathoid-rich alkali-basalt, probably a leucite tephrite, a leucitite or even a lamproite, rocks from mantle source.


2018 ◽  
Vol 61 (6) ◽  
pp. 460-465
Author(s):  
G. G. Mikhailov ◽  
L. A. Makrovets ◽  
L. A. Smirnov

At the present time, rare-earth elements in metallurgy are used in  the form of mischmetal – a rare-earth elements natural mixture (with  atomic numbers from 57 to 71). It contains about 50  wt.  % of cerium.  The remaining elements are mainly lanthanum and niobium. The specific composition is determined by the ore deposit. Inconstant composition of the modifier containing rare-earth metals (REM) can significantly reduce its efficiency. Experimentally, for every branded steels  composition the ratio of various REMs can’t be selected because of the  high costs of obtaining technically pure rare-earth metals. The task of  determining the each rare earth element optimum concentrations and  complex ligature composition can be solved by thermodynamic modeling. In the framework of thermodynamic modeling, the interaction  between magnesium, aluminum and lanthanum with oxygen in liquid  iron is presented. And the thermodynamic model of steel deoxidation  by these active metals composition is considered. On the basis of available literature data on the phase diagrams of the systems MgO – Al2O3 ,  MgO – La2O3 and La2O3 – Al2O3 , the coordinates of the invariant equilibria points in the system MgO – La2O3 – Al2O3 were determined. The  phase diagram of the system MgO – La2O3 – Al2O3 was constructed. It  made possible to establish all phase equilibria realized in the process  of deoxidation of steel with magnesium, lanthanum and aluminum and  to describe these phase equilibria by chemical reactions equations. The  activity of the components in liquid oxide melts was determined using  the theory of subregular ionic solutions, which takes into account the  dependence of the coordination number of cations on the composition  of the oxide melt. The activity of components in metal melts conjugated with oxide systems were determined by Wagner’s theory using the  parameters of the first order interaction. Equilibrium constants values  for the steel deoxidation reactions are installed indirectly by thermodynamic calculations. On the basis of the obtained data the components  solubility surface in the metal melts of Fe – Mg – Al – La – O system  was constructed, which allowed to determine the liquid metal composition regions associated with the corresponding oxide phase.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Thi Kim Dung NHU ◽  
Van Luan PHAM ◽  
Thi Chinh VU ◽  
Van Duoc TRAN

Rare earth metals are used in electricity, electronics, nuclear, optics, space, metallurgy,superconducting and super magnetic materials, glass and ceramics, and agriculture. Some rare earthelements are added to fertilizers for crops and some trials for animal feed. Rare earth elements, exceptfor radioactive promethium, are relatively abundant in the earth's crust. Vietnam has a tremendous rareearth potential, distributed mainly in the Northwest, including Nam Xe, Dong Pao, Muong Hum, andYen Bai. There are many research projects on rare earth ores of different types globally, but the focus ismainly on the essential minerals, including monazite, xenotime, and bastnaesite. This report summarizesresearch data on rare earth ore intending to produce a general assessment of rare earth ore and itsbeneficiation technology in Vietnam.


2020 ◽  
Vol 21 (1) ◽  
pp. 17
Author(s):  
Joko Subandrio ◽  
Ronaldo Irzon

The change of chemical composition because of hydrothermal alteration process is related to the modification on mineralogy and elements mobility. Different alteration conditions could lead to dissimilar geochemical character. This study aims to discuss the alteration effect on trace and rare earth elements composition of an andesite outcrop with hydrothermal alteration in Kaligesing, Purworejo, Central Java Province. Microscopic analysis at Central for Geological Survey was applied to determine the modal mineral composition of the selected samples whilst trace and rare earth elements abundances was measured using Inductively Coupled Plasma – Mass Spectrometry. Plagioclase is the major phenocryst embedded in the fine-grained feldspar and glass groundmass of relatively fresh andesite. On the other hand, sericite, chlorite, epidote, and iron oxide are detected in the altered rock. The more Sr and Rb compositions on unaltered sample exhibit their common existence in plagioclase. The bigger Rb/Sr and the lower Ba/Sr ratios inward to the center of alteration might indicate the more degree of K-bearing mineral formation than Ca-rich mineral alteration. The Ba/Zr escalation and Zr/Y reduction from relatively fresh rock through to the vein of the studied samples are parallel to the previous investigation about andesite alteration. Chondrite-normalized rare-earth elements (REE) pattern of unaltered, altered, and vein samples depicts similar patterns: strong enrichment of Low REE, positive Eu anomaly, and relatively flat high REE. The decrease of Eu anomaly may reflect the reduction of plagioclase modal composition because of alteration and might indicate a reductive alteration state.Keywords: Alteration, andesite, geochemistry, trace and rare earth elements.


2021 ◽  
Vol 03 (01) ◽  
pp. 79-88
Author(s):  
Davron Rakhmonovich Djuraev ◽  
◽  
Mokhigul Madiyorovna Jamilova ◽  

The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".


2021 ◽  
Vol 17 (1) ◽  
pp. 96-102
Author(s):  
Олександр Пономаренко ◽  
Анатолій Самчук ◽  
Катерина Вовк ◽  
Ольга Заяць ◽  
Ірина Кураєва

Introduction. To date, rare earth elements (REE) are used to manufacture most high-tech goods and are crucial in defense technologies (lasers, radars, and electromagnetic weapons), nuclear engineering, metallurgy, and others. All this determines the relevance of their study to assess the rare earth mineral resource base of Ukraine. Problem Statement. The determination of REE in rocks and minerals is a fundamental problem in geochemistry and petrology for understanding the processes of rock formation. However, it is a complex analytical task related to the similar chemical properties of these elements, which are caused by the "lanthanide compression effect". Purpose. The purpose is to develop analytical technologies for determining REE content by the ICP-MS method, to evaluate their content and distribution in granitoids of the Ukrainian Shield. Materials and Methods. The hybrid method of ICP-MS analysis and microwave decomposition of rocks and minerals has been used to measure the REE content. This technique has been tested and used to estimate the content and distribution of REE in fluorites and rare-metal granitoids of the Rusko-Polyanskyi massif of the Korsun-Novomirgorod pluton of the Ukrainian Shield. Results. Analytical technologies for determination of REE in granites and minerals have been developed. The method for determining REE in fluorites and granites without their prior concentration in the range from 0.01 to 1000 ppm with a relative standard deviation of 0.01–0.10 has been described. The content of rare earth elements in the Rusko-Polianskyi granites increases (218–797 g/t), the main concentrator of these elements is fluorite (692–26933 g/t REE). An inverse relationship has been observed between the REE content in fluorites and granites. Conclusions. The developed analytical technologies are the basis for establishing quality assessment criteria and developing principles for the rational use of rare-earth granitoids to create a rare-earth mineral resource base in Ukraine.


EKSPLORIUM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 141
Author(s):  
Novita Sari Fatihah ◽  
Mutia Anggraini ◽  
Afiq Azfar Pratama ◽  
Kurnia Setiawan Widana

ABSTRAK. Monasit merupakan mineral hasil samping pengolahan timah yang mengandung fosfat, logam tanah jarang, dan unsur radioaktif berupa uranium dan torium. Unsur-unsur tersebut dapat dimanfaatkan secara optimal jika terpisah satu dengan yang lainnya melalui proses pengolahan. Pengolahan monasit meliputi proses dekomposisi, pelarutan parsial, dan pengendapan. Pemisahan unsur logam tanah jarang dari unsur radioaktif dalam monasit dilakukan melalui proses pelarutan parsial, akan tetapi pemisahan tersebut belum optimal sehingga diperlukan proses lebih lanjut untuk meningkatkan perolehan unsur-unsur tersebut. Pada penelitian ini, proses tersebut dilakukan melalui dua metode yaitu pelarutan total dengan asam klorida (HCl) yang bertujuan untuk melarutkan semua unsur dalam endapan dan pengendapan dengan ammonium hidroksida (NH4OH) yang bertujuan untuk memisahkan unsur radioaktif dan unsur logam tanah jarang. Kedua metode tersebut dilakukan pada kondisi optimum proses dengan berbagai variasi pH, suhu, dan waktu. Berdasarkan hasil pengamatan diperoleh bahwa kelarutan optimum masing-masing unsur sebesar 67,6% uranium, 15,3% torium, dan 50,8% LTJ pada kondisi proses pelarutan pH 1, pada suhu 80°C selama 2 jam. Sedangkan pada proses pengendapan diperoleh recovery pengendapan masing-masing unsur sebesar 57% uranium, 75,7% torium, 4,8% logam tanah jarang pada kondisi pH 6. Berdasarkan data tersebut disimpulkan bahwa uranium, torium, dan logam tanah jarang dapat larut pada kondisi proses pelarutan pH 1, suhu 80°C selama 2 jam, dan dapat dipisahkan pada kondisi pH pengendapan 6.ABSTRACT. Monazite is a by-product of tin processing containing phosphate, rare earth elements, and radioactive elements such as uranium and thorium. These elements can be utilized optimally if separated from one another through processing. Monazite processing includes decomposition, partial dissolution, and precipitation processes. The separation of rare earth elements from radioactive elements in monazite is carried out through a partial dissolution process, but the separation is not optimal so that further processes are needed to increase the recovery of these elements. In this study, the process was carried out using two methods, namely total dissolution with hydrochloric acid (HCl) which aims to dissolve all elements in the precipitate and precipitation with ammonium hydroxide (NH4OH) which aims to separate radioactive elements and rare earth elements. Both methods were carried out under optimum process conditions with various variations in pH, temperature, and time. Based on observations, it was found that the optimum solubility of each element was 67.6% uranium, 15.3% thorium and 50.8% LTJ under the dissolving process conditions of pH 1, at 80°C for 2 hours. While in the deposition process, the precipitation recovery of each element is 57% uranium, 75.7% thorium, 4.8% rare earth metals at pH 6 conditions. Based on these data, it can be concluded that uranium, thorium, and rare earth elements can be dissolved at pH 1, at 80°C for 2 hours, and can be separated at pH 6 precipitation conditions.


2020 ◽  
Vol 29 (1) ◽  
pp. 197
Author(s):  
Hanna Spasowska-Czarny

<p class="TreA">To run an efficient and well developed economy, it is necessary to procure materials and elements belonging to four main groups, that is energy resources, organic resources, water and mineral resources. Non-energy resources, including critical raw materials, have limited resource base, significant dispersal of minerals and very limited possible substitution. Those resources include rare earth elements, which set directions for contemporary dynamic development of many industries. With the development of innovative technologies, the demand for essential components has grown. The use of rare earth elements to develop energy-efficient technologies is very promising, especially in wind generators and hybrid cars.</p>


2020 ◽  
Vol 1009 ◽  
pp. 149-154
Author(s):  
Tanongsak Yingnakorn ◽  
Piamsak Laokhen ◽  
Loeslakkhana Sriklang ◽  
Tapany Patcharawit ◽  
Sakhob Khumkoa

High power neodymium magnets have been used extensively, such as components of hard disk drives, electric vehicles, and maglev trains. This type of magnet contains of high concentration of rare earth elements. After the device is out of service, the magnet will be removed and the rare earth element contained in the magnet will be extracted in order to reuse for any purposes. Recently, the study on extraction of rare earth elements (REE) from neodymium magnets is increased. However, there was only few research regarding to the extraction of rare earth metals by using a water leaching method. In this study, rare-earth elements were extracted from neodymium magnet scrap by using selective leaching technique. Initially, magnets were leached with 2 M of sulfuric acid for 24 hrs. Then, the leached solution was heated at 110°C in order to remove water and the green powder was remained. The green powder was further roasted in a muffle furnace at various temperatures from 750°C to 900°C for 2 hrs. and subsequently leached by water. Finally, the iron oxide residue was separated from rare earth element solution by filtration. Based on this experiment, it was found that the purity of the rare earth metals can be achieved up to 99.4%.


2014 ◽  
Vol 16 (3) ◽  
pp. 80-85 ◽  
Author(s):  
Wojciech Kujawski ◽  
Beata Pospiech

Abstract The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs) such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.


Sign in / Sign up

Export Citation Format

Share Document