An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

2008 ◽  
Vol 19 (1) ◽  
pp. 77-83 ◽  
Author(s):  
R.K. Kapooria ◽  
S. Kumar ◽  
K.S. Kasana

Today, most of the electricity produced throughout the world is from steam power plants. However, electricity is being produced by some other power generation sources such as hydropower, gas power, bio-gas power, solar cells, etc. One newly devel-oped method of electricity generation is the Magneto hydro dynamic power plant. This paper deals with steam cycles used in power plants. Thermodynamic analysis of the Rankine cycle has been undertaken to enhance the efficiency and reli-ability of steam power plants. The thermodynamic deviations resulting in non-ideal or irreversible func-tioning of various steam power plant components have been identified. A comparative study between the Carnot cycle and Rankine cycle efficiency has been analyzed resulting in the introduction of regen-eration in the Rankine cycle. Factors affecting effi-ciency of the Rankine cycle have been identified and analyzed for improved working of thermal power plants.

2008 ◽  
Vol 19 (3) ◽  
pp. 35-45 ◽  
Author(s):  
R.K. Kapooria ◽  
S. Kumar ◽  
K.S. Kasana

Most of the electricity being produced throughout the world today is from steam power plants. At the same time, many other competent means of gener-ating electricity have been developed viz. electricity from natural gas, MHD generators, biogas, solar cells, etc. But steam power plants will continue to be competent because of the use of water as the main working fluid which is abundantly available and is also reusable. The condenser remains among one of the key components of a steam power plant. The efficiency of a thermal power plant depends upon the efficiency of the condenser. In this paper, a the-oretical investigation about thermal analysis and design considerations of a steam condenser has been undertaken. A hybrid steam condenser using a higher surface area to diameter ratio of cooling a water tube has been analyzed. The use of a hybrid steam condenser enables higher efficiency of the steam power plant by lowering condenser steam pressure and increasing the vacuum inside the con-denser. The latent/sensible heat of steam is used to preheat the feed water supply to the boiler. A con-ceptual technological design aspect of a super vacu-um hybrid surface steam condenser has been theo-retically analyzed.


2015 ◽  
Vol 77 (28) ◽  
Author(s):  
Marwan Affandi ◽  
Ilmi Abdullah ◽  
Nurul Syahirah Khalid

Rankine cycle is one example of vapor power cycles. One important application is in steam power plants. Properties of the important points in the cycle can be found from steam tables. However, reading values from a steam table is rather inconvenient particularly when there are many values to be read such in a simulation. Interpolation must often be done since the table only provides values of properties at determined points. Using equations of states for steam is very convenient since values can be computed quickly. Unfortunately, equations of states for steam are very complicated. A program written in MATLAB to assist the teaching of Rankine cycle using steam has been developed. MATLAB is used since it is widely available. Using this program, a lecturer can easily modify a problem and get the answer quickly. Students can also benefit from the program where they can solve problems and compare the results that they will get manually.  


2009 ◽  
Vol 289-292 ◽  
pp. 413-420 ◽  
Author(s):  
F.J. Bolívar ◽  
L. Sánchez ◽  
M.P. Hierro ◽  
F.J. Pérez

The development of new power generation plants firing fossil fuel is aiming at achieving higher thermal efficiencies of the energy conversion process. The major factors affecting the efficiency of the conventional steam power plants are the temperature and, to a lesser extent, the pressure of the steam entering the turbine. The increased operating temperature and pressure require new materials that have major oxidation resistance. Due to this problem, in the last years numerous studies have been conducted in order to develop new coatings to enhance the resistance of steels with chromium contents between 9 and 12% wt against steam oxidation in order to allow operation of steam turbines at 650 0C. In this study, Si protective coatings were deposited by CVD-FBR on ferritic steel P-91. These type of coatings have shown to be protective at 650 0C under steam for at least 3000 hours of laboratory steam exposure under atmospheric pressure. Morphology and composition of coatings were characterized by different techniques, such as scanning electron microscopy (SEM), electron probe microanalysis, and X-ray diffraction (XRD). The results show a substantial increase of steam oxidation protection afforded by Si coating by CVD-FBR process.


ijd-demos ◽  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nida Urrohmah ◽  
Karin Caroline Kelly ◽  
Fitri Yuliani

Electric Steam Power Plants (PLTU) need coal as fuel to produce electricity. The higher the electrical energy needed to eat, the more fuel will be used. This has happened in the construction of shelters 9 and 10 Suralaya Merak-Banten steam power plant (PLTU). This development is reaping various kinds of rejection because it causes environmental damage not only in the area around the development operation but also in the Greater Jakarta area. The rejection movement was initiated by local residents and supported by international Environmental NGOs.Pembangkit Listrik Tenaga Uap (PLTU) membutuhkan batu bara sebagai bahan bakar untuk menghasilkan energi listrik. Semakin tinggi energi listrik yang dibutuhkan makan akan semakin banyak bahan bakar yang digunakan. Hal ini terjadi pada pembangunan shelter 9 dan 10 PLTU Suralaya di pulau Jawa spesifiknya di daerah Merak-Banten. Pembangunan ini menuai berbagai macam penolakan karena mengakibatkan kerusakan lingkungan tidak hanya pada wilayah sekitar operasi pembangunan namun juga pada wilayah Jabodetabek. Gerakan penolakan diinisiasi tentunya oleh warga setempat dan didukung dengan NGO Internasional penggiat isu lingkungan. 


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
J. A. Becerra ◽  
A. Mun˜oz ◽  
T. Sa´nchez

In this work, a tool to predict the performance of fossil fuel steam power plants under variable operating conditions or under maintenance operations has been developed. This tool is based on the Spencer-Cotton-Cannon method for large steam turbine generator units. The tool has been validated by comparing the predicted results at different loads with real operating data of a 565 MW steam power plant, located in Southern Spain. The results obtained from the model show a good agreement with most of the power plant parameters. The simulation tool has been then used to predict the performance of a steam power plant in different operating conditions such as variable terminal temperature difference or drain cooler approach of the feed-water heaters, or under maintenance conditions like a feed-water heater out of service.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa ◽  
Luiz Augusto Horta Nogueira ◽  
Electo E. Silva Lora

The operational rules for the electricity markets in Latin America are changing at the same time that the electricity power plants are being subjected to stronger environmental restrictions, fierce competition and free market rules. This is forcing the conventional power plants owners to evaluate the operation of their power plants. Those thermal power plants were built between the 1960’s and the 1990’s. They are old and inefficient, therefore generating expensive electricity and polluting the environment. This study presents the repowering of thermal power plants based on the analysis of three basic concepts: the thermal configuration of the different technological solutions, the costs of the generated electricity and the environmental impact produced by the decrease of the pollutants generated during the electricity production. The case study for the present paper is an Ecuadorian 73 MWe power output steam power plant erected at the end of the 1970’s and has been operating continuously for over 30 years. Six repowering options are studied, focusing the increase of the installed capacity and thermal efficiency on the baseline case. Numerical simulations the seven thermal power plants are evaluated as follows: A. Modified Rankine cycle (73 MWe) with superheating and regeneration, one conventional boiler burning fuel oil and one old steam turbine. B. Fully-fired combined cycle (240 MWe) with two gas turbines burning natural gas, one recuperative boiler and one old steam turbine. C. Fully-fired combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. D. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. The gas turbine has water injection in the combustion chamber. E. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners and one old steam turbine. The gas turbine has steam injection in the combustion chamber. F. Hybrid combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners, one old steam boiler burning natural gas and one old steam turbine. G. Hybrid combined cycle (235 MWe) with one gas turbine burning diesel fuel, one recuperative boiler with supplementary burners, one old steam boiler burning fuel oil and one old steam turbine. All the repowering models show higher efficiency when compared with the Rankine cycle [2, 5]. The thermal cycle efficiency is improved from 28% to 50%. The generated electricity costs are reduced to about 50% when the old power plant is converted to a combined cycle one. When a Rankine cycle power plant burning fuel oil is modified to combined cycle burning natural gas, the CO2 specific emissions by kWh are reduced by about 40%. It is concluded that upgrading older thermal power plants is often a cost-effective method for increasing the power output, improving efficiency and reducing emissions [2, 7].


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2226
Author(s):  
Michael Krüger ◽  
Selman Muslubas ◽  
Thomas Loeper ◽  
Freerk Klasing ◽  
Philipp Knödler ◽  
...  

For conventional power plants, the integration of thermal energy storage opens up a promising opportunity to meet future technical requirements in terms of flexibility while at the same time improving cost-effectiveness. In the FLEXI- TES joint project, the flexibilization of coal-fired steam power plants by integrating thermal energy storage (TES) into the power plant process is being investigated. In the concept phase at the beginning of the research project, various storage integration concepts were developed and evaluated. Finally, three lead concepts with different storage technologies and integration points in the power plant were identified. By means of stationary system simulations, the changes of net power output during charging and discharging as well as different storage efficiencies were calculated. Depending on the concept and the operating strategy, a reduction of the minimum load by up to 4% of the net capacity during charging and a load increase by up to 5% of the net capacity during discharging are possible. Storage efficiencies of up to 80% can be achieved.


2010 ◽  
Vol 31 (3) ◽  
pp. 105-113 ◽  
Author(s):  
Tadeusz Chmielniak ◽  
Henryk Łukowicz

Condensing power plant cycle — assessing possibilities of improving its efficiency This paper presents a method for assessing the degree of approaching the paper output of the Clausius-Rankine cycle to the Carnot cycle. The computations to illustrate its use were performed for parameters characteristic of the current state of development of condensing power plants as well as in accordance with predicted trends for their further enhancing. Moreover there are presented computations of energy dissipation in the machines and devices working in such a cycle.


Sign in / Sign up

Export Citation Format

Share Document