scholarly journals Gerakan Kontra Pembangunan Shelter 9 Dan 10 Pltu Suralaya Merak-Banten

ijd-demos ◽  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nida Urrohmah ◽  
Karin Caroline Kelly ◽  
Fitri Yuliani

Electric Steam Power Plants (PLTU) need coal as fuel to produce electricity. The higher the electrical energy needed to eat, the more fuel will be used. This has happened in the construction of shelters 9 and 10 Suralaya Merak-Banten steam power plant (PLTU). This development is reaping various kinds of rejection because it causes environmental damage not only in the area around the development operation but also in the Greater Jakarta area. The rejection movement was initiated by local residents and supported by international Environmental NGOs.Pembangkit Listrik Tenaga Uap (PLTU) membutuhkan batu bara sebagai bahan bakar untuk menghasilkan energi listrik. Semakin tinggi energi listrik yang dibutuhkan makan akan semakin banyak bahan bakar yang digunakan. Hal ini terjadi pada pembangunan shelter 9 dan 10 PLTU Suralaya di pulau Jawa spesifiknya di daerah Merak-Banten. Pembangunan ini menuai berbagai macam penolakan karena mengakibatkan kerusakan lingkungan tidak hanya pada wilayah sekitar operasi pembangunan namun juga pada wilayah Jabodetabek. Gerakan penolakan diinisiasi tentunya oleh warga setempat dan didukung dengan NGO Internasional penggiat isu lingkungan. 

Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
J. A. Becerra ◽  
A. Mun˜oz ◽  
T. Sa´nchez

In this work, a tool to predict the performance of fossil fuel steam power plants under variable operating conditions or under maintenance operations has been developed. This tool is based on the Spencer-Cotton-Cannon method for large steam turbine generator units. The tool has been validated by comparing the predicted results at different loads with real operating data of a 565 MW steam power plant, located in Southern Spain. The results obtained from the model show a good agreement with most of the power plant parameters. The simulation tool has been then used to predict the performance of a steam power plant in different operating conditions such as variable terminal temperature difference or drain cooler approach of the feed-water heaters, or under maintenance conditions like a feed-water heater out of service.


Author(s):  
Januar Arif Fatkhurrahman ◽  
Ikha Rasti Julia Sari ◽  
Yose Andriani

Sulfur dioxide and Nitrogen dioxide were significant emissions emitted from coal-steam power plants that may cause health problems for humans and damage the environment. Studying the SO2 and NO2 gradients in Indonesian residential communities is critical for evaluating resident's SO2 and NO2 exposure. The method developed to assist analysis of spatial SO2 and NO2 gradients on a community scale combines a mesoscale Lagrangian dispersion model with field observations around coal-steam power plants using GRAL. The objectives of this study focused on GRAL dispersion of SO2 and NO2 in an Indonesian residential community near the coal-steam power plant, with a 6 km x 8 km resolution. Analysis of this model indicates a correlation between simulation and observation, with SO2 coefficient correlation (R) within 0.5 – 0.82 and NO2 coefficient correlation (R) within 0.30 – 0.59. Model performances analyze by NMSE and FB. The SO2 model is comparable to observation data since it has a better average NMSE and FB than the NO2 model. Due to data limitation of observation collected by grab sampling instead of continuous ambient measurement system affect different respond time compared with hourly data from the model.


2008 ◽  
Vol 19 (3) ◽  
pp. 35-45 ◽  
Author(s):  
R.K. Kapooria ◽  
S. Kumar ◽  
K.S. Kasana

Most of the electricity being produced throughout the world today is from steam power plants. At the same time, many other competent means of gener-ating electricity have been developed viz. electricity from natural gas, MHD generators, biogas, solar cells, etc. But steam power plants will continue to be competent because of the use of water as the main working fluid which is abundantly available and is also reusable. The condenser remains among one of the key components of a steam power plant. The efficiency of a thermal power plant depends upon the efficiency of the condenser. In this paper, a the-oretical investigation about thermal analysis and design considerations of a steam condenser has been undertaken. A hybrid steam condenser using a higher surface area to diameter ratio of cooling a water tube has been analyzed. The use of a hybrid steam condenser enables higher efficiency of the steam power plant by lowering condenser steam pressure and increasing the vacuum inside the con-denser. The latent/sensible heat of steam is used to preheat the feed water supply to the boiler. A con-ceptual technological design aspect of a super vacu-um hybrid surface steam condenser has been theo-retically analyzed.


2015 ◽  
Vol 77 (28) ◽  
Author(s):  
Marwan Affandi ◽  
Ilmi Abdullah ◽  
Nurul Syahirah Khalid

Rankine cycle is one example of vapor power cycles. One important application is in steam power plants. Properties of the important points in the cycle can be found from steam tables. However, reading values from a steam table is rather inconvenient particularly when there are many values to be read such in a simulation. Interpolation must often be done since the table only provides values of properties at determined points. Using equations of states for steam is very convenient since values can be computed quickly. Unfortunately, equations of states for steam are very complicated. A program written in MATLAB to assist the teaching of Rankine cycle using steam has been developed. MATLAB is used since it is widely available. Using this program, a lecturer can easily modify a problem and get the answer quickly. Students can also benefit from the program where they can solve problems and compare the results that they will get manually.  


Author(s):  
J. Hilbert Anderson ◽  
F. M. Laucks

As electrical energy consumption has continued to rise in the United States, and producers of electricity search for power plants requiring less installation time, the gas turbine has emerged as a significant contributor to our nation’s energy needs. Despite a thermal efficiency disadvantage as compared to a conventional steam power plant, it has nevertheless played an increasingly larger role in the production of electrical power. A scheme is here presented whereby the output of a given gas turbine can be increased by more than 60% and its efficiency increased by 30%, thus making it more competitive efficiency-wise with the conventional steam power plant.


2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Sulton Ari Wibowo ◽  
Dyah Lestari

The electrical energy is an energy that is needed by the people. Theelectrical energy, to date, came from several power plants, such aselectric steam power plants and diesel power plants. The communitymust pay the service provider, such as the State ElectricityCompany (PLN) with a rising cost, to obtain electrical energy.However, there were other alternative energies, for example, solarpower plants and windmill power plants. The hybrid system is acombination of two or more different energy sources to meet thedemand. The hybrid system was also expected to solve the problemthat might arise in utilizing other energies, the site condition, andthe unpredicted situation on the power plant. The solution to theseproblems was a hybrid using a monitoring device with ACS 712sensor current parameter, ZMPT101B voltage sensor, LDR solarsensor, hybrid electrical energy power, controller for four electricalsource inputs and three electrical sources for the output load. Thedevice used Arduino Mega 2560 for data processing, ESP 8266 asthe module to connect the device to the internet network and relayas the control actuator. Monitoring and controlling the device usedthe internet network and the implementation of the Internet ofThings (IoT) on the hybrid system plants (PLN, generator, solarpower plant, windmill power plant) that was integrated into thewebsite. The overall test resulted in the comparison average errorvalue between the device and the measuring instrument of thecurrent, voltage, and power. The test also resulted in the averageerror value of the response time for the four input contacts and threeoutput contacts. The average error value of the current was 2.13%,the average error value of the voltage was 0.7%, and the averageerror value from the power parameter was 0%. Meanwhile, theaverage error value of response time was 0.23 seconds. Based onthe above results, it can be concluded that the monitoring andcontrolling system from the website with the implementation of theIoT in the hybrid power system was worked following the design.


JTAM ROTARY ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 65
Author(s):  
Andhika Bayu Oktavianto ◽  
Mastiadi Tamjidillah

Salah satu pembangkit listrik di Indonesia adalah pembangkit listrik Asam Asam yang terletak di dekat mulut tambang batubara. Setiap pembangkit listrik membutuhkan sejumlah besar air sebagai fluida kerja atau sebagai air pendingin. Pembangkit Listrik Tenaga Uap Asam Asam Batubara menggunakan air sungai sebagai air pendingin dengan mesin pendingin sebagai mesinnya. Pada bulan September 2017, menara pendingin unit 2B dari PLTU Asam Asam Batubara mengalami kegagalan operasi karena spacer rusak dan membuat PLTU Asam Asam Batubara mengalami penurunan dan kerugian lainnya. Tim teknik mendiagnosis kasus tersebut karena ketidakselarasan. Berdasarkan uraian akar penyebab masalah, ada tiga masalah utama yang mungkin terjadi yaitu: misalignment, unbalance, dan rotasi gearbox berat. Misalignment adalah pemicu utama untuk serangkaian masalah yang menyebabkan kegagalan operasi menara pendingin. Maka perlu mempelajari masalah utama yang menyebabkan kegagalan operasi menara pendingin untuk ditindaklanjuti dengan pemeliharaan preventif sesuai dengan kondisi saat ini untuk mencegah kegagalan yang serupa di unit 2B dan unit serupa lainnya. One of the power plants in Indonesia is the Asam Asam power plant located near the mouth of the coal mine. Each power plant requires large amounts of water as a working fluid or as a cooling water. Asam Asam Coal Fired Steam Power Plant uses river water as a cooling water with the cooling towers as its engine. In September 2017, the cooling tower unit 2B of Asam Asam Coal Fired Steam Power Plant experienced an operation failure because of the spacer was broken and made the Asam Asam Coal Fired Steam Power Plant to experience derating and other losses. The engineering team diagnoses the case due to misalignment. Based on the description of the root causes of the problem, there are three main problems that might occur namely : misalignment, unbalance, and heavy gearbox rotation. Misalignment is the main trigger for a series of problems causing failure of cooling tower operations. Then it is necessary to study the main problems causing the failure of the cooling tower operation to be followed up with preventive maintenance in accordance with the current conditions to prevent similar failures in unit 2B and other similar units.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2226
Author(s):  
Michael Krüger ◽  
Selman Muslubas ◽  
Thomas Loeper ◽  
Freerk Klasing ◽  
Philipp Knödler ◽  
...  

For conventional power plants, the integration of thermal energy storage opens up a promising opportunity to meet future technical requirements in terms of flexibility while at the same time improving cost-effectiveness. In the FLEXI- TES joint project, the flexibilization of coal-fired steam power plants by integrating thermal energy storage (TES) into the power plant process is being investigated. In the concept phase at the beginning of the research project, various storage integration concepts were developed and evaluated. Finally, three lead concepts with different storage technologies and integration points in the power plant were identified. By means of stationary system simulations, the changes of net power output during charging and discharging as well as different storage efficiencies were calculated. Depending on the concept and the operating strategy, a reduction of the minimum load by up to 4% of the net capacity during charging and a load increase by up to 5% of the net capacity during discharging are possible. Storage efficiencies of up to 80% can be achieved.


Author(s):  
Roberto Carapellucci ◽  
Lorena Giordano

In recent years, the environmental concerns and the need to improve the competitiveness of existing coal-fired power plants have renewed the interest for the repowering option. Repowering techniques based on combustion turbines allow to increase thermodynamic performances of the steam power plant, as well as to reduce emissions of greenhouse gases, due to efficiency improvement and partial fuel-shift from coal to natural gas. This paper aims to evaluate performances of feedwater repowering of a coal fired power plant, considering various steam turbine overloads. Two types of analysis are here proposed. First, thermodynamic and environmental benefits of feedwater repowering are evaluated in terms of efficiency gain and CO2 emission reduction, with reference to the steam power plant only. Then, effects of the integration of a gas turbine into the existing coal fired power plant are highlighted. Different feedwater repowering options, varying the operating mode of the coal fired power plant, are compared from the energy, economic and environmental point of view. The attention is focused on performance parameters of the integrated steam-gas power plant, as well as on marginal indices defining the efficiency and unit cost of electricity of the additional power production.


Sign in / Sign up

Export Citation Format

Share Document