scholarly journals A hominin first rib discovered at the Sterkfontein Caves, South Africa

2016 ◽  
Vol Volume 112 (Number 5/6) ◽  
Author(s):  
Gaokgatlhee Tawan ◽  
Daniel García-Martínez ◽  
Jennifer Eyre ◽  
Markus Bastir ◽  
Lee Berger ◽  
...  

Abstract First ribs – the first or most superior ribs in the thorax – are rare in the hominin fossil record, and when found, have the potential to provide information regarding the upper thorax shape of extinct hominins. Here, we describe a partial first rib from Member 4 of the Sterkfontein Caves, South Africa. The rib shaft is broken away, so only the head and neck are preserved. The rib is small, falling closest to small-bodied Australopithecus first ribs (AL 288-1 and MH1). Given that it was recovered near the StW 318 femur excavation, which also represents a small individual, we suggest that the two may be associated. Three-dimensional geometric morphometric analyses were used to quantify the rib fragment morphology and compare it to extant hominoid and other fossil hominin ribs. While only the proximal end is preserved, our analyses show that South African Australopithecus share derived features of the proximal first rib more closely resembling A. afarensis and later hominins than great apes.

2021 ◽  
Vol 118 (5) ◽  
pp. e2015215118
Author(s):  
Alessandro Urciuoli ◽  
Clément Zanolli ◽  
Sergio Almécija ◽  
Amélie Beaudet ◽  
Jean Dumoncel ◽  
...  

Late Miocene great apes are key to reconstructing the ancestral morphotype from which earliest hominins evolved. Despite consensus that the late Miocene dryopith great apes Hispanopithecus laietanus (Spain) and Rudapithecus hungaricus (Hungary) are closely related (Hominidae), ongoing debate on their phylogenetic relationships with extant apes (stem hominids, hominines, or pongines) complicates our understanding of great ape and human evolution. To clarify this question, we rely on the morphology of the inner ear semicircular canals, which has been shown to be phylogenetically informative. Based on microcomputed tomography scans, we describe the vestibular morphology of Hispanopithecus and Rudapithecus, and compare them with extant hominoids using landmark-free deformation-based three-dimensional geometric morphometric analyses. We also provide critical evidence about the evolutionary patterns of the vestibular apparatus in living and fossil hominoids under different phylogenetic assumptions for dryopiths. Our results are consistent with the distinction of Rudapithecus and Hispanopithecus at the genus rank, and further support their allocation to the Hominidae based on their derived semicircular canal volumetric proportions. Compared with extant hominids, the vestibular morphology of Hispanopithecus and Rudapithecus most closely resembles that of African apes, and differs from the derived condition of orangutans. However, the vestibular morphologies reconstructed for the last common ancestors of dryopiths, crown hominines, and crown hominids are very similar, indicating that hominines are plesiomorphic in this regard. Therefore, our results do not conclusively favor a hominine or stem hominid status for the investigated dryopiths.


2019 ◽  
Vol 34 (1) ◽  
pp. 233-254 ◽  
Author(s):  
T. H. M. Stein ◽  
W. Keat ◽  
R. I. Maidment ◽  
S. Landman ◽  
E. Becker ◽  
...  

Abstract Since 2016, the South African Weather Service (SAWS) has been running convective-scale simulations to assist with forecast operations across southern Africa. These simulations are run with a tropical configuration of the Met Office Unified Model (UM), nested in the Met Office global model, but without data assimilation. For November 2016, convection-permitting simulations at 4.4- and 1.5-km grid lengths are compared against a simulation at 10-km grid length with convection parameterization (the current UM global atmosphere configuration) to identify the benefits of increasing model resolution for forecasting convection across southern Africa. The simulations are evaluated against satellite rainfall estimates, CloudSat vertical cloud profiles, and SAWS radar data. In line with previous studies using the UM, on a monthly time scale, the diurnal cycle of convection and the distribution of rainfall rates compare better against observations when convection-permitting model configurations are used. The SAWS radar network provides a three-dimensional composite of radar reflectivity for northeast South Africa at 6-min intervals, allowing the evaluation of the vertical development of precipitating clouds and of the timing of the onset of deep convection. Analysis of four case study days indicates that the 4.4-km simulations have a later onset of convection than the 1.5-km simulations, but there is no consistent bias of the simulations against the radar observations across the case studies.


2018 ◽  
Author(s):  
Ian Towle

Tertiary dentine forms when an odontoblast is directly affected by stimuli, commonly through occlusal wear. In this study the presence of tertiary dentine is recorded in three South African fossil hominin species (Australopithecus africanus, Homo naledi and Paranthropus robustus), and two extant great ape species (Gorilla gorilla gorilla and Pan troglodytes). Frequencies of tertiary dentine were calculated for each species based on macroscopic observations of teeth with dentine exposed through occlusal wear. Overall, the three hominin species have similar tertiary dentine frequencies ranging from 12% to 16.13%. In contrast, over 90% of gorilla teeth with dentine visible show tertiary dentine. Chimpanzees fall between these extremes with 47.21% of teeth affected. Species variances are not related to differences in occlusal wear. Instead, some species appear predisposed to produce tertiary dentine earlier and/or faster than other species. Therefore, tertiary dentine formation has the potential to provide useful information on fossil specimens. For example, the uniformly low rate of tertiary dentine formation in hominins may be due to thick enamel having a similar role in preventing loss of function of teeth, i.e., extending the life of a tooth. In contrast tertiary dentine is clearly an important mechanism for normal dental function in gorillas, and may have evolved to maintain sheering surfaces for masticating tough vegetation.


2018 ◽  
Author(s):  
Ian Towle

Tertiary dentine forms when an odontoblast is directly affected by stimuli, commonly through occlusal wear. In this study the presence of tertiary dentine is recorded in three South African fossil hominin species (Australopithecus africanus, Homo naledi and Paranthropus robustus), and two extant great ape species (Gorilla gorilla gorilla and Pan troglodytes). Frequencies of tertiary dentine were calculated for each species based on macroscopic observations of teeth with dentine exposed through occlusal wear. Overall, the three hominin species have similar tertiary dentine frequencies ranging from 12% to 16.13%. In contrast, over 90% of gorilla teeth with dentine visible show tertiary dentine. Chimpanzees fall between these extremes with 47.21% of teeth affected. Species variances are not related to differences in occlusal wear. Instead, some species appear predisposed to produce tertiary dentine earlier and/or faster than other species. Therefore, tertiary dentine formation has the potential to provide useful information on fossil specimens. For example, the uniformly low rate of tertiary dentine formation in hominins may be due to thick enamel having a similar role in preventing loss of function of teeth, i.e., extending the life of a tooth. In contrast tertiary dentine is clearly an important mechanism for normal dental function in gorillas, and may have evolved to maintain sheering surfaces for masticating tough vegetation.


2018 ◽  
Author(s):  
Ronald J Clarke ◽  
Kathleen Kuman

Here we present the first full anatomical description of the 3.67 million-year-old Australopithecus skull StW 573 that was recovered with its skeleton from the Sterkfontein Member 2 breccia in the Silberberg Grotto. Analysis demonstrates that it is most similar in multiple key morphological characters to a group of fossils from Sterkfontein Member 4 and Makapansgat that are here distinguished morphologically as A. prometheus. This taxon contrasts with another group of fossils from those sites assigned to A. africanus. The anatomical reasons for why these groupings should not be lumped together (as is frequently done for the South African fossils) are discussed in detail. In support of this classification, we also present for the first time a palate (StW 576 from Sterkfontein Member 4) newly reconstructed by RJC, which has a uniquely complete adult dentition of an A. africanus. The StW 573 skull also has certain similarities with other earlier Australopithecus fossils in East Africa, A. afarensis and A. anamensis, which are discussed. One of its most interesting features is a pattern of very heavy anterior dental wear unlike that found in A. africanus but resembling that found in A. anamensis at 4.17 Ma. While StW 573 is the only hominid fossil in Sterkfontein Member 2, we conclude that competitive exclusion probably accounts for the synchronous and sympatric presence of two species of Australopithecus in the younger deposits at Makapansgat and Sterkfontein Member 4. Because the StW 573 skull is associated with a near-complete skeleton that is also described for the first time in this special issue, we are now able to use this individual to improve our understanding of more fragmentary finds in the South African fossil record of Australopithecus.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4150 ◽  
Author(s):  
Jun Liu ◽  
Fernando Abdala

The Permian from China has a well-known terrestrial record where approximately 30 tetrapod taxa, including several therapsids, have been described. However, the record of therocephalians in China has remained elusive. Shiguaignathus wangi gen. et sp. nov., discovered in the Member III of the Naobaogou Formation, Nei Mongol, China, is here described. This is the first therocephalian recovered from this fauna and only the second from the Permian of China. It is represented by a well-preserved robust snout of a medium-sized animal. This is the first akidnognathid reported from the Chinese Permian and only the second genus from Laurasia as one genus is known from Russia whereas the remaining members of the group are from the South African Karoo Basin. A phylogenetic analysis of therocephalians supports a basal position of S. wangi within Akidnognathidae, followed by the Russian Annatherapsidus. Akidnognathidae is the latest major group of therocephalian appearing in the fossil record, and one of the few that does not have species from South Africa representing its most basal members.


2019 ◽  
Vol 115 (9/10) ◽  
Author(s):  
Bontle Mataboge ◽  
Amélie Beaudet ◽  
Jason L. Heaton ◽  
Travis R. Pickering ◽  
Dominic Stratford

The site of the Sterkfontein Caves, South Africa, is one of the richest early hominin fossil-bearing sites in Africa. Recent excavations in the Milner Hall locality have contributed to the discovery of new hominin specimens, including StW 669, a right permanent maxillary first molar (M1). StW 669 was excavated from the T1 deposits, which consist of a mixture of sediments from Members 2 and 5 of the Sterkfontein Formation. Accordingly, the deposits have the potential to contain remains of Australopithecus, Paranthropus and Homo. In this study, we employed micro-focus X-ray tomography in order to assess dental tissue proportions, enamel thickness distribution and enamel-dentine junction morphology as approaches to investigate the taxonomy of StW 669. We compare our results to those generated on the teeth of Australopithecus africanus, Paranthropus robustus, Homo erectus, Homo antecessor, Homo neanderthalensis and Homo sapiens. Our results suggest that StW 669 shares quantitative and qualitative affinities with M1s of Homo in terms of tissue proportions (i.e. two- and three-dimensional average and relative enamel thickness of 1.2–1.3 mm and 18.4, respectively) and enamel thickness distribution (i.e. thickest enamel on the lingual aspect of the protocone). However, data on the enamel-dentine junction morphology of StW 669 are inconclusive as to the tooth’s taxonomic affinities. Pending additional morphometric analyses, our studies of inner morphology of the crown of StW 669 support its attribution to Homo.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Russell D. C. Bicknell ◽  
Stephen Pates

AbstractHorseshoe crabs are archetypal marine chelicerates with a fossil record extending from the Lower Ordovician to today. The major horseshoe crab groups are thought to have arisen in the middle to late Palaeozoic. Here we present the oldest known limuloid from the lower Carboniferous (Tournaisian stage, c. 350 million years ago) of Scotland: Albalimulus bottoni gen. et sp. nov. A comprehensive phylogenetic analysis supports the placement of A. bottoni as a representative of the extant family Limulidae and 100 million years older than any other limulid taxon. The use of geometric morphometric analyses corroborate the erection of the new taxon and illustrates the exploitation of morphospace by xiphosurids. This new taxon highlights the complex evolutionary history of xiphosurids and the importance of documenting these unique Palaeozoic individuals.


Sign in / Sign up

Export Citation Format

Share Document