The Effect of Ultrasonic Impact-Friction Treatment on a Surface Roughness of 09Mn2Si Structural Steel

2020 ◽  
Vol 22 (2) ◽  
pp. 16-29
Author(s):  
Nikita Lezhnin ◽  
◽  
Alexey Makarov ◽  
Sergey Luchko ◽  
Boris Loginov ◽  
...  
2021 ◽  
Vol 39 (4A) ◽  
pp. 565-572
Author(s):  
Hiyam M. Jedy ◽  
Rana A. Anaee ◽  
Abdullah A. Abdulkarim

The Nb2O5-Ni coating was processed using DC sputtering on structural steel and study characterization of composite coating SEM/EDS inspection indicated clearly perfect incorporation of Nb2O5 within the nickel rich. Increasing in surface roughness and decreasing in average diameters of particles were obtained for coated surface compared with uncoated surface from AFM analysis, in addition, microhardness test and thickness test showed that increasing of the hardness value to 163 HV for Nb2O5 - Ni composite coating compared to 132 HV for uncoated samples, the hardness for Ni coating also increasing to155 HV and the thickness for Nb2O5-Ni composite coatings increased significantly compared to uncoated samples.


2014 ◽  
Vol 14 (3) ◽  
pp. 144-151
Author(s):  
J. Valíček ◽  
M. Harničárová ◽  
M. Kušnerová ◽  
J. Zavadil ◽  
R. Grznárik

Abstract The paper is based on results obtained from topography of surfaces of sheets rolled from deep-drawing steel of the type KOHAL grade 697, non-alloy low-carbon structural steel EN 10263-2:2004 and aluminium. The presented results document correctness of the assumption that the rolling force Froll increases with the increasing reduction Δh and the quality of the rolled surface is improved at the simultaneous increasing of strength of rolled sheets and the decreasing of size of structural grains. The experiment was performed on the two-high rolling stand DUO 210 SVa, which enables only non-continuous technology in contrast to the rolling mill with continuous reduction on one sheet in several degrees on rolling trains, in consequence of which the obtained height parameters of the section are in close correlation with the predicted dependence. Contribution of the work consists in the creation of a mathematical model (algorithm) for predicting technological parameters of the two-high rolling stand DUO 210 SVa at change of the absolute reduction Δh, for example for a deep-drawing steel of the type KOHAL grade 697 and non-alloy lowcarbon structural steel PN EN 10263-2:2004 and aluminium, and also in the development of a method of calculation applicable to any material being rolled in general, because the authors have found that various materials can be differentiated by a derived analytical criterion IKP. This criterion is a function of ratio between the modulus of elasticity of reference material and that of actually rolled material. The reference material is here deep-drawing steel of the type KOHAL grade 697. Verification was carried out by measuring changes of final surface roughness profile and final strength of rolled sheets of the stated materials in relation to reductions and those were compared with theoretically predicted values. It is possible to identify and predict on the basis of this algorithm an instant state of surface topography in respect to variable technological conditions. On this basis it is then possible to calculate and plot individual main technological parameters.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4381
Author(s):  
Lukáš Pelikán ◽  
Michal Slaný ◽  
Libor Beránek ◽  
Vladislav Andronov ◽  
Martin Nečas ◽  
...  

Dry machining is one of the main ways to reduce the environmental burden of the machining process and reduce the negative effect of the cutting fluid and aerosols on operators. In addition, dry machining can reduce overall machining costs and, in the case of large workpieces, reduce the extra work associated with removing residual cutting fluid from the workpiece and adjacent area. For high-strength structural steel products, it is typical to drill holes with larger diameters of around 20 mm. Therefore, this work is devoted to the investigation of the dry drilling process carried out on a workpiece made of S960QL steel with a helical drill with a diameter of 21 mm. The aim was to find suitable cutting conditions for dry drilling with regard to process stability and workpiece quality. An experiment performed with a coolant served as a comparison base. A dry drilling experiment was performed with cutting speeds from 30 to 70 m·min−1 and feeds from 0.1 to 0.3 mm·rev−1, and with the results of this experiment, the same experiment with flood cooling was performed. During the drilling process, spindle torque values were recorded using the indirect spindle current recording method. The macroscopic chip morphology was studied to understand the cutting process. The chip thickness ratio was measured, as well as the maximum diameter of spiral chips. On the final workpiece, the qualitative and dimensional parameters of the holes were evaluated, such as the diameter, cylindricity and surface roughness, depending on the change in the cutting conditions and cutting environment. Evaluation of the obtained data led to the following conclusions. When drilling the S960QL material, there is only a very small increase in the drilling torque during dry drilling compared to drilling with cutting fluid. The increase in friction demonstrated by the chip thickness coefficient is significant. The influence of the environment on the dimensional accuracy showed a tendency for a slight increase in the holes’ diameters during dry machining. In comparison, the cylindricity of the dry-drilled holes shows a lower deviation than the holes drilled with cutting fluid. The surface roughness of the holes after dry drilling is affected by the increased friction of the outgoing chips, despite the resulting parameters being very good due to the drilling technology standards. This work provides a comprehensive view of the dry drilling process under defined conditions, and the results represent suitable cutting conditions to achieve a stable cutting process and a suitable quality of drilled holes.


Author(s):  
I. H. Musselman ◽  
R.-T. Chen ◽  
P. E. Russell

Scanning tunneling microscopy (STM) has been used to characterize the surface roughness of nonlinear optical (NLO) polymers. A review of STM of polymer surfaces is included in this volume. The NLO polymers are instrumental in the development of electrooptical waveguide devices, the most fundamental of which is the modulator. The most common modulator design is the Mach Zehnder interferometer, in which the input light is split into two legs and then recombined into a common output within the two dimensional waveguide. A π phase retardation, resulting in total light extinction at the output of the interferometer, can be achieved by changing the refractive index of one leg with respect to the other using the electrooptic effect. For best device performance, it is essential that the NLO polymer exhibit minimal surface roughness in order to reduce light scattering. Scanning tunneling microscopy, with its high lateral and vertical resolution, is capable of quantifying the NLO polymer surface roughness induced by processing. Results are presented below in which STM was used to measure the surface roughness of films produced by spin-coating NLO-active polymers onto silicon substrates.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


Sign in / Sign up

Export Citation Format

Share Document