scholarly journals Screening of eggplant genotypes for resistance to bacterial wilt disease caused by Clavibacter michiganensis subsp. michiganensis

2021 ◽  
Vol 57 (No. 2) ◽  
pp. 112-121
Author(s):  
Hatice Filiz Boyaci ◽  
Aylin Kabas ◽  
Yesim Aysan ◽  
Jaime Prohens

Clavibacter michiganensis subsp. michiganensis (Cmm) is one of the phytopathogenic bacteria causing bacterial wilt disease and severe yield losses in tomatoes and other solanaceous vegetables. Although there are some reports on Cmm infections in eggplants (Solanum melongena), there is no information available on the resistance sources and genetic control of the resistance to Cmm in this crop. We performed a search for resistance sources to Cmm in eggplants, in a set of 46 genotypes including landraces, inbred lines and cultivars and some cultivated and wild relatives, as well as an analysis of the genetic control of the resistance. A mixture of different Cmm strains from different genomic groups was used for the screening. Plants were inoculated through the injection of 10 µL of a Cmm suspension at a concentration of 10<sup>7</sup> cfu/mL in a single point of the stem. The symptoms were recorded at nine weeks after the inoculation with a 0–4 symptoms scale. The differences were observed in the symptoms in the collection evaluated, with the disease severity index of the genotypes ranging from 0.00 to 4.00. While 31 genotypes displayed no symptoms, three cultivated eggplant genotypes were highly susceptible. Reciprocal F1 and F2 generations were obtained from the crosses between the most susceptible genotype (CT30) and a resistant one (CT49). The genetic control of the resistance adjusted well to one dominant and one recessive gene model underlying the resistance to Cmm. These results are important for selection and breeding for resistance to Cmm in eggplants.

Author(s):  
Jana Víchová ◽  
R. Pokorný

Resistance of determinant tomato varieties to pathogens causing bacterial wilt disease – Clavibacter michiganensis subsp. michiganensis (Cmm) and Ralstonia solanacearum (Rs) – was tested under greenhouse conditions. In tests to Cmm resistance, two inoculation methods were compared (inoculation “to the cut off top” of a plant and inoculation by three punctures into a stalk). The inoculation method “into a stalk” appeared to be most suitable. In both cases of inoculation, the highest level of resistance was found in Minigold variety. The rather high level of resistance was also found in varieties Aneta and Orange. In tests to Rs resistance, the most resistant varieties were Minigold, Aneta and Orange, which are recommended for direct consumption.


2021 ◽  
pp. 126751
Author(s):  
Bhaskar Dowarah ◽  
Heena Agarwal ◽  
Debasish B Krishnatreya ◽  
Pankaj Losan Sharma ◽  
Nilamjyoti Kalita ◽  
...  

2018 ◽  
Vol 47 (6) ◽  
pp. 591-600
Author(s):  
Brati Acharya ◽  
Ankit Kumar Ghorai ◽  
Subhramalya Dutta ◽  
Praveen Kumar Maurya ◽  
Subrata Dutta ◽  
...  

2021 ◽  
Author(s):  
April M MacIntyre ◽  
Valerian Meline ◽  
Zachary Gorman ◽  
Steven P Augustine ◽  
Carolyn J Dye ◽  
...  

Ralstonia solanacearum causes plant bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in host produced trehalose. Water stressed plants accumulate the disaccharide trehalose, which increases drought tolerance via abscisic acid (ABA) signaling networks. Because infected plants have reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. Transcriptomic responses of susceptible vs. resistant tomato plants to R. solanacearum infection revealed differential expression of drought-associated genes, including those involved in ABA and trehalose metabolism. ABA was enriched in xylem sap from R. solanacearum-infected plants. Treating roots with ABA lowered stomatal conductance and reduced R. solanacearum stem colonization. Treating roots with trehalose increased ABA in xylem sap and reduced plant water use by reducing stomatal conductance and temporarily improving water use efficiency. Further, trehalose-treated plants were more resistant to bacterial wilt disease. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent defense genes, increased xylem sap levels of SA and other antimicrobial compounds, and increased wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic resistance. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggests that that R. solanacearum-infected tomato plants produce more trehalose to improve water use efficiency and increase wilt disease resistance. In turn, R. solanacearum degrades trehalose as a counter-defense.


Sign in / Sign up

Export Citation Format

Share Document