scholarly journals Ergosterol induces mobilization of internal calcium in tobacco cells

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 516-518
Author(s):  
T. Kašparovský ◽  
M.-L. Milat ◽  
J.-P. Blein ◽  
L. Havel ◽  
V. Mikeš

As for natural sterols, only ergosterol is recognized very specifically and sensitively (nM) by plants cells. Ergosterol interacts with tobacco suspension cells and trigger pH changes of extracellular medium, oxidative burst and synthesis of phytoalexins. Compared with the responses induced by cryptogein, a proteinaceous elicitor from Phytophthora sp., oxidative burst, DpH and phytoalexin accumulation were weaker with ergosterol. Cryptogein stimulated an apparent continuous uptake of external calcium within 40 min, whereas no net uptake of external calcium occurred upon the addition of ergosterol. However, the elicitation with either cryptogein or ergosterol resulted in an increase of the fluorescence of calcium green 1 in cytosol. The use of several inhibitors of calcium channels (La<sup>3+</sup>, TMB-8, verapamil, ruthenium red, nifedipine) and a protein-kinase inhibitors (staurosporin, NPC-15437, H-89) suggests that the elicitation with ergosterol includes the mobilization of internal calcium stores in vacuoles mediated by IP3 and some protein kinases.

1994 ◽  
Vol 267 (2) ◽  
pp. H812-H820 ◽  
Author(s):  
A. Mattiazzi ◽  
L. Hove-Madsen ◽  
D. M. Bers

Phosphorylation of the sarcoplasmic reticulum (SR) protein phospholamban by adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) and Ca-calmodulin-dependent protein kinase (CaM-KII) stimulates Ca-adenosinetriphosphatase (ATPase) activity and SR Ca transport, but the role of CaM-KII-dependent phosphorylation is not well defined. We studied the PKA- and CaM-KII-dependent regulation of SR Ca transport in digitonin-permeabilized rabbit ventricular myocytes. SR Ca uptake and free Ca concentration were measured on line with indo 1 and Ca electrodes in the presence of 20 microM ruthenium red and 10 mM oxalate. neither N5,2'-w-dibutyryl-cAMP (up to 500 microM) nor the nonhydrolyzable cAMP agonist adenosine 3'5'-cyclic monophosphorothioate sodium salt (Sp-cAMP[S]; up to 275 microM) affected the maximum uptake rate (Vmax) or the dissociation constant (Kd) for Ca uptake. However, the PKA inhibitor H-89 significantly increased Kd (e.g., from 307 +/- 67 to 826 +/- 62 nM Ca at 40-65 microM H-89) without significantly affecting Vmax. Both CaM-KII inhibitors, KN-62 (60 microM) and a CaM-KII inhibitory peptide (10 microM), significantly decreased Vmax from 11.95 +/- 0.5 to 9.48 +/- 0.6 nmol.mg-1.min-1 and from 10.95 +/- 1.72 to 7.37 +/- 0.94 nmol.mg-1.min-1, respectively, without consistently changing Kd. The effects of H-89 on Kd and of KN-62 on Vmax were prevented by a monoclonal antibody to phospholamban 2D12 (consistent with the antibody removing the inhibitory effect of phospholamban on the SR Ca-ATPase).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 24 (6) ◽  
pp. 797 ◽  
Author(s):  
Grant S. Hotter

A cell wall elicitor preparation from the needle pathogen Dothistroma pini was used to induce defence responses in Pinus radiata cell suspension cultures. Addition of elicitor to cell suspensions induced a rapid, transient burst in the accumulation of H2O2, with maximal response between 20 and 40 min post-elicitation. The protein kinase inhibitors staurosporine and K252a inhibited H2O2 accumulation showing that protein phosphorylation is required in the signal transduction pathway leading to the oxidative burst. Over a more extended time period elicitation of suspension cells lead to the activation of phenylpropanoid biosynthesis. The activity of phenylalanine ammonia-lyase (EC 4.3.1.5), the first enzyme in the phenylpropanoid biosynthetic pathway, increased 8-fold following elicitation with maximal activity 36 h post-elicitation. The activity of cinnamyl alcohol dehydrogenase (EC 1.1.1.195), an enzyme involved in lignin biosynthesis, increased 2.5-fold with maximal response 48–72 h post-elicitation. Thioglycolic acid extractable material increased 2-fold with maximal response 48–72 h post-elicitation, and phloroglucinol–HCl-positive material increased over the same time course. These data show that P. radiata suspension cells are an excellent model system for investigating the biochemistry and enzymology of pathogen defence responses in P. radiata.


2008 ◽  
Vol 21 (12) ◽  
pp. 1609-1621 ◽  
Author(s):  
Leendert C. van Loon ◽  
Peter A. H. M. Bakker ◽  
Walter H. W. van der Heijdt ◽  
David Wendehenne ◽  
Alain Pugin

Colonization of roots by selected strains of fluorescent Pseudomonas spp. can trigger induced systemic resistance (ISR) against foliar pathogens in a plant species-specific manner. It has been suggested that early responses in cell suspension cultures in response to rhizobacterial elicitors, such as generation of active oxygen species (AOS) and extracellular medium alkalinization (MA), are linked to the development of ISR in whole plants. Perception of flagellin was demonstrated to elicit ISR in Arabidopsis, and bacterial lipopolysaccharides (LPS) have been shown to elicit several defense responses and to act as bacterial determinants of ISR in various plant species. In the present study, the LPS-containing cell walls, the pyoverdine siderophores, and the flagella of Pseudomonas putida WCS358, P. fluorescens WCS374, and P. fluorescens WCS417, which are all known to act as elicitors of ISR in selected plant species, were tested for their effects on the production of AOS, MA, elevation of cytoplasmic Ca2+ ([Ca2+]cyt), and defense-related gene expression in tobacco suspension cells. The LPS of all three strains, the siderophore of WCS374, and the flagella of WCS358 induced a single, transient, early burst of AOS, whereas the siderophores of WCS358 and WCS417 and the flagella of WCS374 and WCS417 did not. None of the compounds caused cell death. Once stimulated by the active compounds, the cells became refractory to further stimulation by any of the active elicitors, but not to the elicitor cryptogein from the oomycete Phytophthora cryptogea, indicating that signaling upon perception of the different rhizobacterial compounds rapidly converges into a common response pathway. Of all compounds tested, only the siderophores of WCS358 and WCS417 did not induce MA; the flagella of WCS374 and WCS417, although not active as elicitors of AOS, did induce MA. These results were corroborated by using preparations from relevant bacterial mutants. The active rhizobacterial elicitors led to a rapid increase in [Ca2+]cyt, peaking at 6 min, whereas the inactive siderophores of WCS358 and WCS417 elicited a single spike at 1 min. Elicitation of the cells by cell-wall LPS of WCS358 or the siderophore of WCS374 induced a weak, transient expression of several defense-related genes, including PAL and GST. The spectrum of early responses of the suspension cells was not matched by the expression of ISR in whole tobacco plants against Erwinia carotovora pv. carotovora. Of the live bacterial strains, only WCS358 elicited significant ISR, but application of the LPS or the siderophore of all three strains also elicited ISR. Notably, the absence of elicitation of AOS and MA in suspension-cultured cells but induction of ISR in whole plants by the siderophore of WCS358, which was lost upon treatment with the siderophore-minus mutant of WCS358, indicates that the early responses in suspension cells are not predictive of the ability to induce ISR in whole plants. Possible explanations for these discrepancies are discussed.


1993 ◽  
Vol 265 (5) ◽  
pp. C1356-C1362 ◽  
Author(s):  
J. P. Dehaye ◽  
I. H. Valdez ◽  
R. J. Turner

The beta-adrenergic agonist isoproterenol induced an increase in intracellular calcium concentration ([Ca2+]i) in rat submandibular granular ducts that was blocked by beta-adrenergic but not by alpha-adrenergic or muscarinic antagonists. This effect was only partially inhibited by the selective beta 1- and beta 2-adrenergic antagonists atenolol and ICI-118,551, but was completely blocked by the combination of the two, suggesting the involvement of multiple (or atypical) beta-adrenergic receptor subtypes. The response to isoproterenol was mimicked by forskolin, 3-isobutyl-1-methylxanthine, and dibutyryl adenosine 3',5'-cyclic monophosphate, but it was blocked by protein kinase inhibitors. The response of [Ca2+]i to isoproterenol was sustained in Ca(2+)-replete replete medium but transient in Ca(2+)-free medium, indicating the involvement of both Ca2+ entry and release from intracellular stores. However, isoproterenol stimulation produced no increase in ductal inositol phosphate levels. In addition, isoproterenol was still able to increase [Ca2+]i after the carbachol-induced depletion of inositol 1,4,5-trisphosphate (IP3)-sensitive calcium stores. We conclude that isoproterenol, acting through cAMP, releases Ca2+ from an IP3-insensitive intracellular store in salivary granular ducts.


2020 ◽  
Vol 15 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Hongyu Tao ◽  
Ling Zuo ◽  
Huanli Xu ◽  
Cong Li ◽  
Gan Qiao ◽  
...  

Background: In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. Objective: This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. Methods: Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. Results: More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.


1990 ◽  
Vol 265 (36) ◽  
pp. 22255-22261
Author(s):  
J F Geissler ◽  
P Traxler ◽  
U Regenass ◽  
B J Murray ◽  
J L Roesel ◽  
...  

NAR Cancer ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Amrita Sule ◽  
Jinny Van Doorn ◽  
Ranjini K Sundaram ◽  
Sachita Ganesa ◽  
Juan C Vasquez ◽  
...  

Abstract Mutations in the isocitrate dehydrogenase-1 and -2 (IDH1/2) genes were first identified in glioma and acute myeloid leukemia (AML), and subsequently found in multiple other tumor types. These neomorphic mutations convert the normal product of enzyme, α-ketoglutarate (αKG), to the oncometabolite 2-hydroxyglutarate (2HG). Our group recently demonstrated that 2HG suppresses the high-fidelity homologous recombination (HR) DNA repair pathway, resulting in a state referred to as ‘BRCAness’, which confers exquisite sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. In this study, we sought to elucidate sensitivity of IDH1/2-mutant cells to DNA damage response (DDR) inhibitors and, whether combination therapies could enhance described synthetic lethal interactions. Here, we report that ATR (ataxia telangiectasia and Rad3-related protein kinase) inhibitors are active against IDH1/2-mutant cells, and that this activity is further potentiated in combination with PARP inhibitors. We demonstrate this interaction across multiple cell line models with engineered and endogenous IDH1/2 mutations, with robust anti-tumor activity in vitro and in vivo. Mechanistically, we found ATR and PARP inhibitor treatment induces premature mitotic entry, which is significantly elevated in the setting of IDH1/2-mutations. These data highlight the potential efficacy of targeting HR defects in IDH1/2-mutant cancers and support the development of this combination in future clinical trials.


Sign in / Sign up

Export Citation Format

Share Document