scholarly journals Estimating the economic life of forest machinery using the cumulative cost model and cost minimization model in Iranian Caspian forests

2018 ◽  
Vol 64 (No. 5) ◽  
pp. 216-223 ◽  
Author(s):  
Hejazian Mohammad ◽  
Lotfalian Majid ◽  
Limaei Soleiman Mohammadi

This study was conducted in order to estimate the economic life of two models of rubber-tired skidders, namely Timberjack 450C and HSM 904, in Iranian Caspian forests. The total annual costs and average cumulative cost of skidders were calculated by life-cycle costing analysis. The economic life of the machines was estimated by both the cumulative cost model and cost minimization model. The results indicated that the economic life of Timberjack 450C and HSM 904 is 7,700 h (at the end of the 11<sup>th</sup> year) and 15,300 h (at the end of the 17<sup>th</sup> year), respectively, using the cost minimization model. Furthermore, the results indicated that the economic life of Timberjack 450C and HSM 904 is 9,100 h (at the end of the 13<sup>th</sup> year) and 11,900 h (at the end of the 21<sup>st</sup> year), respectively, using the cumulative cost model. The cumulative cost model estimated the economic life of skidders longer than the cost minimization model.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3783 ◽  
Author(s):  
Martin Khzouz ◽  
Evangelos Gkanas ◽  
Jia Shao ◽  
Farooq Sher ◽  
Dmytro Beherskyi ◽  
...  

This work investigates life cycle costing analysis as a tool to estimate the cost of hydrogen to be used as fuel for Hydrogen Fuel Cell vehicles (HFCVs). The method of life cycle costing and economic data are considered to estimate the cost of hydrogen for centralised and decentralised production processes. In the current study, two major hydrogen production methods are considered, methane reforming and water electrolysis. The costing frameworks are defined for hydrogen production, transportation and final application. The results show that hydrogen production via centralised methane reforming is financially viable for future transport applications. The ownership cost of HFCVs shows the highest cost among other costs of life cycle analysis.



2021 ◽  
Vol 11 (4) ◽  
pp. 1423
Author(s):  
José Manuel Salmerón Lissen ◽  
Cristina Isabel Jareño Escudero ◽  
Francisco José Sánchez de la Flor ◽  
Miriam Navarro Escudero ◽  
Theoni Karlessi ◽  
...  

The 2030 climate and energy framework includes EU-wide targets and policy objectives for the period 2021–2030 of (1) at least 55% cuts in greenhouse gas emissions (from 1990 levels); (2) at least 32% share for renewable energy; and (3) at least 32.5% improvement in energy efficiency. In this context, the methodology of the cost-optimal level from the life-cycle cost approach has been applied to calculate the cost of renovating the existing building stock in Europe. The aim of this research is to analyze a pilot building using the cost-optimal methodology to determine the renovation measures that lead to the lowest life-cycle cost during the estimated economic life of the building. The case under study is an apartment building located in a mild Mediterranean climate (Castellon, SP). A package of 12 optimal solutions has been obtained to show the importance of the choice of the elements and systems for renovating building envelopes and how energy and economic aspects influence this choice. Simulations have shown that these packages of optimal solutions (different configurations for the building envelope, thermal bridges, airtightness and ventilation, and domestic hot water production systems) can provide savings in the primary energy consumption of up to 60%.



Author(s):  
Wai M. Cheung ◽  
Linda B. Newnes ◽  
Antony R. Mileham ◽  
Robert Marsh ◽  
John D. Lanham

This paper presents a review of research in the area of life cycle costing and offers a critique of current commercial cost estimation systems. The focus of the review is on relevant academic research on life cycle cost from 2000 onwards. In addition to this a comparison of the current cost estimation systems is presented. Using the review findings and industrial investigations as a base, a set of mathematical representations for design and manufacturing costs and the introduction of the critical factors is proposed. These are considered in terms of the operational, maintenance and disposal costs to create a method for ascertaining the life cycle cost estimate for complex products. This is presented using as an exemplar, research currently being undertaken in the area of low volume and long life electronic products in the UK defence sector. The benefit of the method proposed is that it aims to avoid the inflexibility of traditional approaches which usually require historical and legacy data to support the cost estimation processes.





1978 ◽  
Vol 22 (1) ◽  
pp. 267-271
Author(s):  
F. Thomas Eggemeier ◽  
Gary A. Klein

Life cycle cost estimates of training equipment for F-16 Avionics Intermediate Station personnel were developed. The major purpose was to compare the cost of intermediate level maintenance training when conducted on simulated vs actual avionics test equipment. This was the initial phase of a planned two-part effort. The analysis was therefore limited to estimates of training device acquisition and maintenance costs. Total estimated fifteen year costs for simulated equipment trainers were approximately 50% less than comparable estimates for actual equipment trainers.



2016 ◽  
Vol 8 (5) ◽  
pp. 428 ◽  
Author(s):  
Sabrina Neugebauer ◽  
Silvia Forin ◽  
Matthias Finkbeiner


Author(s):  
Laxman Yadu Waghmode ◽  
Anil Dattatraya Sahasrabudhe

In order to survive in today’s competitive global business environment, implementation of life cycle costing methodology with a greater emphasis on cost control could be one of the convincing approaches for the manufacturing firms. The product life cycle costing approach can help track and analyse the cost implications associated with each phase of product life cycle. Life cycle costing (LCC) practices with traditional costing methods may provide results that have a severe deviation from the real product LCC as it focuses on the cost of materials, labor and a low portion of overheads apportioned by the absorption rate to the product. Activity based costing (ABC) has emerged as one of the several innovative and more accurate costing methods in recent years. It is based on the principle that products or services consume activities and activities consume resources that generate costs. Thus, the ABC system focuses on calculating the costs incurred on performing the activities to manufacture a product. This paper presents a LCC modeling approach for estimating life cycle cost of pumps using activity based costing method. The study was conducted in a large pump manufacturing company from India that has significant global standing within its industry. Firstly, all the activities and cost drivers associated with the life cycle of a pump have been identified. A methodology for LCC analysis using ABC is then developed and it is applied to two different pumps manufactured by the same industry and the results obtained are presented.



Sign in / Sign up

Export Citation Format

Share Document