scholarly journals Transgene coding of a key enzyme of the glycolytic pathway helps to decrease sugar content in potato tubers

2012 ◽  
Vol 48 (No. 1) ◽  
pp. 42-45 ◽  
Author(s):  
O. Navrátil ◽  
P. Bucher ◽  
J. Vacek

Cold-stored potato tubers gradually accumulate reducing sugars. A proposed reason is a cold-induced blocking of glycolysis. The introduction and expression of the bacterial gene Lbpfk coding for cold-tolerant phosphofructokinase might counteract this effect. We have recently introduced this gene into several Czech potato cultivars. The obtained transgenic lines were then tested for three years in field trials. In 17 transgenic lines derived from two of the cultivars we have investigated the accumulation of reducing sugars during two and four months of cold storage. Although in all transgenic lines the sugar content still increased between the 2<sup>nd</sup> and the 4<sup>th</sup> month of cold-storage, the level of reducing sugars was in all transgenic lines after both two and four months of cold storage considerably lower than in the original cultivars. The extent of sugar accumulation was also influenced by the parental genotype. No significant differences in sugar accumulation were observed between the transgenic lines from the same parent.&nbsp;

1970 ◽  
Vol 16 ◽  
pp. 95-99 ◽  
Author(s):  
Md Rezaul Karim ◽  
MMH Khan ◽  
Md Salim Uddin ◽  
NK Sana ◽  
F Nikkon ◽  
...  

Significant differences were found in sugar content and carbohydrate splitting enzyme activities in tubers of ten indigenous potato varieties at harvesting and after keeping at cold storage. The activities of invertase, amylase, β-galactosidase and cellulase in all varieties were found to be increased by 2-12, 1.2-4, 1.9-4.5, and 1.1-3.7 folds, respectively from harvesting to cold stored potatoes. The amount of starch and sucrose were found to be decreased by 1.15-2.8 and 1.02-1.4 folds, respectively from harvesting to cold stored in all varieties. Total soluble sugar and reducing sugar contents in potatoes were increased by 1.02-1.4 and 4-11 folds, respectively from harvesting to cold stored in all varieties of potatoes. The amount of reducing sugar increased in cold stored potatoes due to the increased activities of carbohydrate splitting enzymes. Key words: Potatoes, Indigenous, Carbohydrate splitting enzymes, Sugars. DOI:10.3329/jbs.v16i0.3748 J. bio-sci. 16: 95-99, 2008


2016 ◽  
Vol 3 (2) ◽  
pp. 295-304
Author(s):  
Fatema Zahan ◽  
Md Masudul Karim ◽  
Tahmina Akter ◽  
Md Alamgir Hossain

Seven potato genotypes that are available in Bangladesh, were grown at the field laboratory under the Crop Botany Department, Bangladesh Agricultural University in 2014. Reducing sugars and free asparagine were determined at freshly harvested potato tubers and those after storing at 80C for 8 months. There was no significant variation of asparagine content in all genotypes of freshly harvested tubers. But a significant difference was found in reducing sugar content. The lowest was in the samples of the genotypes Cardinal and Rumanapakri, and the highest in Hagrai. The variety Diamant appeared to contain the lowest amount of reducing sugars after 8 months storage. The results showed that freshly harvested Cardinal, Rumanapakri and Diamant after storage produced less amount of acrylamide after frying as potato chips or French fries. It may be concluded that screening potato genotypes primarily on their reducing sugar contents could be useful tool to minimize acrylamide formation in potato chips and French fries. Further investigation is needed to find out the factors affecting reducing sugar and asparagine content in potato tubers.Res. Agric., Livest. Fish.3(2): 295-304, August 2016


1977 ◽  
Vol 16 (10) ◽  
pp. 1603-1604 ◽  
Author(s):  
Jacob Amir ◽  
Varda Kahn ◽  
Miriam Unterman

2016 ◽  
pp. 765-769
Author(s):  
Martijn Leijdekkers

Since 2013, the glucose content of all beet samples from beet reception and field trials is routinely analyzed in The Netherlands using a biosensor which is integrated into the automatic beet laboratory system. The invert sugar content is subsequently calculated from the glucose content using a linear conversion factor. This additional information helps to identify beet deliveries with a questionable beet quality at an early stage and provides valuable information on various agronomic factors that increase invert sugar accumulation in the beet. Based on results obtained during the past years, different factors are highlighted that affect the invert sugar content in the beet. Among these factors, beet deterioration following frost damage and the presence of root rot due to infestation by pests and diseases have shown to increase the invert sugar content dramatically. In addition, unfavorable storage conditions and bad harvesting quality had a substantial impact on invert sugar accumulation. Growth conditions and beet variety also influenced the invert sugar content markedly, although to a much lesser extent. Using the obtained data, the most important control measures that enable growers to prevent undesired invert sugar formation and consequent sugar losses in their beet are discussed.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 200 ◽  
Author(s):  
Risky Mulana Anur ◽  
Nurul Mufithah ◽  
Widhi Dyah Sawitri ◽  
Hitoshi Sakakibara ◽  
Bambang Sugiharto

Sucrose phosphate synthase (SPS) is a key enzyme in sucrose synthesis, which controls sucrose content in plants. This study was designed to examine the efficacy of the overexpression of SoSPS1 gene on sucrose accumulation and carbon partitioning in transgenic sugarcane. The overexpression of SoSPS1 gene increased SPS activity and sucrose content in transgenic sugarcane leaves. More importantly, the overexpression enhanced soluble acid invertase (SAI) activity concomitant with the increase of glucose and fructose levels in the leaves, whereas sucrose synthase activity exhibited almost no change. In the stalk, a similar correlation was observed, but a higher correlation was noted between SPS activity and sugar content. These results suggest that SPS overexpression has both direct and indirect effects on sugar concentration and SAI activity in sugarcane. In addition, SPS overexpression resulted in a significant increase in plant height and stalk number in some transgenic lines compared to those in non-transgenic control. Taken together, these results strongly suggest that enhancing SPS activity is a useful strategy for improving sugarcane yield.


2016 ◽  
pp. 625-632 ◽  
Author(s):  
Christa Hoffmann ◽  
Katharina Schnepel

Good storability of sugar beet is of increasing importance, not only to reduce sugar losses, but also with regard to maintaining the processing quality. Genotypic differences are found in storage losses. However, it is not clear to which extent damage may contribute to the genotypic response. The aim of the study was to quantify the effect of root tip breakage on storage losses of different genotypes. For that purpose, in 2012 and 2013, six sugar beet genotypes were grown in field trials at two locations. After lifting roots were damaged with a cleaning device. They were stored for 8 and 12 weeks, either under controlled conditions in a climate container at constant 8°C, or under ambient temperature in an outdoor clamp. The close correlation underlines that storage losses under controlled conditions (constant temperature) can well be transferred to conditions in practice with fluctuating temperature. The strongest impact on invert sugar accumulation and sugar loss after storage resulted from storage time, followed by damage and growing environment (year × growing site). Cleaning reduced soil tare but increased root tip breakage, in particular for genotypes with low marc content. During storage, pathogen infestation and invert sugar content of the genotypes increased with root tip breakage, but the level differed between growing environments. Sugar loss was closely related to invert sugar accumulation for all treatments, genotypes and environments. Hence, it can be concluded that root tip breakage contributes considerably to storage losses of sugar beet genotypes, and evidently genotypes show a different susceptibility to root tip breakage which is related to their marc content. For long-term storage it is therefore of particular importance to avoid damage during the harvest operations and furthermore, to have genotypes with high storability and low susceptibility to damage.


Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1423-1434
Author(s):  
Cristina M Menéndez ◽  
Enrique Ritter ◽  
Ralf Schäfer-Pregl ◽  
Birgit Walkemeier ◽  
Alexandra Kalde ◽  
...  

Abstract A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F1 populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining &gt;10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.


1986 ◽  
Vol 63 (7) ◽  
pp. 363-372 ◽  
Author(s):  
Joseph B. Sieczka ◽  
Constance Maatta

1986 ◽  
Vol 26 (6) ◽  
pp. 745 ◽  
Author(s):  
PA Taylor ◽  
SP Flett ◽  
RFde Boer ◽  
D Marshall

The period of susceptibility of potato tubers to powdery scab (Spongospora subterranea) was studied by inoculating potato plants with spores, or by watering plants in infested soil, at different stages of plant development in greenhouse conditions. Maximum susceptibility began about 1 week before the stage when 50% of stolons had swollen to at least 5-mm diameter (tuber set), and ended 3-4 weeks later. With holding irrigation water during this period reduced the severity of powdery scab by 65-75% in field experiments in 1981-82 and 1982-83, but had no apparent effect on disease severity in 3 out of 6 large-scale field trials during 1984-85.


Sign in / Sign up

Export Citation Format

Share Document