scholarly journals Current challenges for trait economic values in animal breeding

2020 ◽  
Vol 65 (No. 12) ◽  
pp. 454-462
Author(s):  
Zuzana Krupová ◽  
Emil Krupa ◽  
Ludmila Zavadilová ◽  
Eva Kašná ◽  
Eliska Žáková

Modern selection approaches are expected to bring about the cumulative and permanent improvement of animal performance and profitability of animal production. Breeding values of traits along with trait economic values (EVs) are utilised for economic selection purposes with many species all over the world. Currently, some challenges related to trait EVs in animal breeding should be considered. First, the selection response based on the higher accuracy of genomic selection may be reduced due to improper weighting of the trait breeding values of selection candidates. A comprehensive approach applied in bioeconomic models allows suitable trait EV calculations. Further challenges comprise the new breeding objectives associated with climate change, environmental mitigation and animal adaptability. The estimation of EVs for traits influencing greenhouse gas (GHG) emissions has been mostly based on including the value of CO<sub>2</sub> emission equivalent in the trait EVs, on calculating EVs for feed efficiency traits and on methane yield as a direct trait of GHG emission. Genetic improvement of production, functional, feed efficiency and methane traits through the application of multi-trait selection indices was found to be crucial for mitigation of emissions and farm profitability. Defining the non-market values of traits connected with climate protection could be a useful solution for including these traits in an economic breeding objective. While GHG emissions mostly change the costs per unit of production, animal adaptability in its complexity influences animal performance. Clear definitions of disease, fertility, mortality and other breeding objective traits allow the proper calculation of trait EVs, and an accurate estimation of trait genetic parameters could lead to sufficient economic selection response. This complex approach could be beneficial for more effective utilisation of inputs and overall economic and environmental sustainability of animal production.

2018 ◽  
Vol 63 (No. 10) ◽  
pp. 408-418 ◽  
Author(s):  
Z. Krupová ◽  
M. Wolfová ◽  
E. Krupa ◽  
J. Přibyl ◽  
L. Zavadilová

The objective of this study was to calculate economic weights for ten current breeding objective traits and for four new traits characterising claw health and feed efficiency in Czech Holstein cattle and to investigate the impact of different selection indices on the genetic responses for these traits. Economic weights were estimated using a bio-economic model, while applying actual (2017) and predicted (2025) production and economic circumstances. For the actual situation, the economic weights of claw disease incidence were –100.1 € per case, and those of daily residual feed intake in cows, breeding heifers, and fattened animals were –79.37, –37.16, and –6.33 €/kg dry matter intake per day, respectively. In the predicted situation, the marginal economic weights for claw disease and feed efficiency traits increased on average by 38% and 20%, respectively. The new traits, claw disease incidence and daily residual feed intake, were gradually added to the 17 current Holstein selection index traits to improve the new traits. Constructing a comprehensive index with 21 traits and applying the general principles of the selection index theory, a favourable annual genetic selection response was obtained for the new traits (–0.008 cases of claw disease incidence and –0.006 kg of daily residual feed intake across all cattle categories), keeping the annual selection response of the most important current breeding objective traits at a satisfactory level (e.g., 73 kg of milk yield per lactation, 0.016% of milk fat). Claw health and feed efficiency should be defined as new breeding objectives and new selection index traits of local dairy population.


Author(s):  
Geoff Simm ◽  
Geoff Pollott ◽  
Raphael Mrode ◽  
Ross Houston ◽  
Karen Marshall

Abstract This chapter discussed the effects of applying the different principles in animal breeding such genetic analysis, predicting breeding values, use of tools and breeding technology, selection response within breeds, and strategies for genetic improvements in dairy cattle.


Author(s):  
Yvette de Haas ◽  
◽  
Marco C. A. M. Bink ◽  
Randy Borg ◽  
Erwin P. C. Koenen ◽  
...  

Animal production is responsible for 14.5% of total anthropogenic greenhouse gas (GHG) emissions. Approximately half of these emissions originate directly from animal production, whereas the other half comes from feed production. Animal breeding aims at improving animal production and efficient use of resources, which results in a reduction of environmental impact. In this chapter we quantify the contribution of animal breeding to reducing the environmental impact of the four major livestock species in the Netherlands, namely laying hens, broilers and pigs (all monogastrics), and dairy cattle (ruminants). For eggs, and broiler and pig meat we focussed on GHG emissions and nitrogen and phosphorus efficiency, whereas for dairy we focussed on enteric methane emissions, an important contributor to GHG emissions. Results showed that current selection strategies on increased (feed) efficiency indirectly reduces environmental impact per unit of animal product by about 1% per year. If the aim is to directly select on environmental traits, recording of new traits is required; e.g., nitrogen and phosphorus contents of meat and eggs, and methane emission of individual dairy cows.


Author(s):  
G. M. Fernandes ◽  
R. P. Savegnago ◽  
L. A. Freitas ◽  
L. El Faro ◽  
V. M. Roso ◽  
...  

Abstract In breeding programmes, the genetic selection process is based on the prediction of animal breeding values, and its results may vary according to the employed selection method. The current study developed an economic selection index for animals of the Angus breed; performed cluster analyses using the breeding values in order to evaluate the genetic profile of the animals candidates to selection, and compared the obtained results between the economic selection index and the cluster analyses. The evaluated traits included weaning weight, 18-month weight, scrotal circumference, fat thickness and ribeye area. Economic values were obtained using bioeconomic modelling, simulating a complete cycle production system of beef cattle breeds in Brazil, and the selection objective were the weaning rate and slaughter weight. The chosen selection index was composed of all of the traits used as selection criteria for the simulated production system. During the cluster analyses, the population was divided into two to four groups, in which the groupings containing potential animals were assessed. The animals of the grouping which was used for comparison with the selection index were identified, and most of the bulls that were included in the index were among the best in the analysed group. These results suggest that the cluster analyses can be used as a tool for the selection of animals to be used as parents for future generations.


animal ◽  
2013 ◽  
Vol 7 ◽  
pp. 303-315 ◽  
Author(s):  
J.A. Basarab ◽  
K.A. Beauchemin ◽  
V.S. Baron ◽  
K.H. Ominski ◽  
L.L. Guan ◽  
...  

Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 913-941 ◽  
Author(s):  
M Turelli ◽  
N H Barton

Abstract We develop a general population genetic framework for analyzing selection on many loci, and apply it to strong truncation and disruptive selection on an additive polygenic trait. We first present statistical methods for analyzing the infinitesimal model, in which offspring breeding values are normally distributed around the mean of the parents, with fixed variance. These show that the usual assumption of a Gaussian distribution of breeding values in the population gives remarkably accurate predictions for the mean and the variance, even when disruptive selection generates substantial deviations from normality. We then set out a general genetic analysis of selection and recombination. The population is represented by multilocus cumulants describing the distribution of haploid genotypes, and selection is described by the relation between mean fitness and these cumulants. We provide exact recursions in terms of generating functions for the effects of selection on non-central moments. The effects of recombination are simply calculated as a weighted sum over all the permutations produced by meiosis. Finally, the new cumulants that describe the next generation are computed from the non-central moments. Although this scheme is applied here in detail only to selection on an additive trait, it is quite general. For arbitrary epistasis and linkage, we describe a consistent infinitesimal limit in which the short-term selection response is dominated by infinitesimal allele frequency changes and linkage disequilibria. Numerical multilocus results show that the standard Gaussian approximation gives accurate predictions for the dynamics of the mean and genetic variance in this limit. Even with intense truncation selection, linkage disequilibria of order three and higher never cause much deviation from normality. Thus, the empirical deviations frequently found between predicted and observed responses to artificial selection are not caused by linkage-disequilibrium-induced departures from normality. Disruptive selection can generate substantial four-way disequilibria, and hence kurtosis; but even then, the Gaussian assumption predicts the variance accurately. In contrast to the apparent simplicity of the infinitesimal limit, data suggest that changes in genetic variance after 10 or more generations of selection are likely to be dominated by allele frequency dynamics that depend on genetic details.


2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Pedro Augusto Ribeiro Salvo ◽  
Viviane C Gritti ◽  
João Luiz Pratti Daniel ◽  
Leandro S Martins ◽  
Fernanda Lopes ◽  
...  

Abstract Exogenous fibrolytic enzymes (EFE) improve the energy availability of grains for nonruminant animals by reducing encapsulation of the endosperm nutrients within grain cell walls; however, these benefits are unknown in the treatment of corn-based silage for cattle. The objective of the present study was to evaluate the effects of adding EFE at ensiling on the nutritive value of high-moisture corn (HMC) and snaplage (SNAP) for finishing Nellore bulls. The EFE dose was 100 g/Mg fresh matter in both HMC and SNAP. Diets were 1) a SNAP + HMC control (without enzyme addition); 2) SNAP + HMC EFE (with enzymes); 3) a whole-plant corn silage (WPCS) + HMC control (without enzyme addition); and 4) WPCS + HMC EFE (with enzymes). In addition to the silages, the diets were also composed of soybean hulls, soybean meal, and mineral–vitamin supplement. The statistical design was a randomized complete block with a factorial arrangement of treatments, and the experiment lasted 122 d. For in situ and in vitro analyses, 2 cannulated dry cows were used. There was no interaction between the diets and EFE application (ADG, P = 0.92; DMI, P = 0.77; G:F, P = 0.70), and there was no difference between the SNAP and WPCS diets regarding the DMI (P = 0.53), ADG (P = 0.35), and feed efficiency (ADG:DMI, P = 0.83). Adding EFE to the HMC and SNAP at ensiling did not affect ADG but decreased DMI (P = 0.01), resulting in greater feed efficiency by 5.91% (P = 0.04) than that observed in animals fed diets without the addition of EFE. Addition of EFE to HMC resulted in reduced NDF content and increased in vitro and in situ DM digestibility compared with untreated HMC. No effects were found for the addition of EFE to SNAP. Fecal starch decreased with EFE application (P = 0.05). Therefore, the diet energy content (TDN, NEm, and NEg) calculated from animal performance increased (P = 0.01) with the addition of EFE to HMC. In conclusion, exchanging the NDF from WPCS with that from SNAP did not affect the performance of finishing cattle, whereas the addition of EFE to HMC at ensiling improved animal performance by increasing the energy availability of the grain.


animal ◽  
2012 ◽  
Vol 6 (3) ◽  
pp. 440-448 ◽  
Author(s):  
Z. Krupová ◽  
M. Wolfová ◽  
E. Krupa ◽  
M. Oravcová ◽  
J. Daňo ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 2506
Author(s):  
Klaus Mittenzwei

This paper studies the hypothesis that farm structure and the regional distribution of agricultural activity themselves have a significant impact on greenhouse gas (GHG) emissions from agriculture. Applying a dynamic model for the Norwegian agricultural sector covering the entire farm population, the model results support the hypothesis. Even without mitigation options, GHG emissions decline by 1.4 per cent if agriculture becomes regionally concentrated and increase by 1.5 per cent if a policy that favors a small-scale farm structure is put in place. Adding a carbon tax to a policy that leads to regional concentration, may help to reconcile competing policy objectives. A switch from animal production to crop production, and an extensification of animal production keeps a large resource base across the country while cutting GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document