scholarly journals Effect of leguminous crop and fertilization on soil organic carbon in 30-years field experiment

2014 ◽  
Vol 60 (No. 11) ◽  
pp. 507-511 ◽  
Author(s):  
D. Pikuła ◽  
A. Rutkowska

The paper presents the results of over 30-years of field experiment on soil organic carbon accumulation under different crop rotation, manure and mineral N fertilization. The experiment was conducted with two crop rotations: A – recognized as soil exhausting from humus (potatoes, winter wheat, spring barley and corn) and B enriching soil with humus (potatoes, winter wheat, spring barley, and clover with grass mixture). In each crop rotation, five rates of manure – 0, 20, 40, 60 and 80 t/ha and four rates of mineral fertilizers N1, N2, N3 and N4 were applied. At the beginning of the experiment in 1979, the initial organic carbon content amounted to 0.74%, and after 33 years dropped to 0.61% in crop rotation without legumes. On the contrary, in crop rotation with clover – grass mixture, the tendency to stabilization of organic carbon quantity in soil was observed with the highest value 0.79% and the lowest one 0.72%. It was found that crop rotation enriching soil with humus produced organic matter ever more than those depleting the soil with humus, regardless of the manure fertilization. Mineral fertilization has modified soil organic carbon content.

Geoderma ◽  
2019 ◽  
Vol 340 ◽  
pp. 289-302 ◽  
Author(s):  
Lin Yang ◽  
Min Song ◽  
A-Xing Zhu ◽  
Chengzhi Qin ◽  
Chenghu Zhou ◽  
...  

2018 ◽  
Vol 29 (4) ◽  
pp. 20-25
Author(s):  
Katarzyna Szyszko-Podgórska ◽  
Marek Kondras ◽  
Izabel Dymitryszyn ◽  
Anita Matracka ◽  
Mirosław Cimoch ◽  
...  

Abstract Macrofauna plays a very important role in the functioning of the natural environment. It plays an important role in the decomposition of organic matter by mixing and crushing organic matter in soil. Invertebrate faeces influence the development of microorganisms and their dead bodies stimulate mineralization in the soil. They also influence the humification processes. The aim of the study was to determine the influence of macrofauna and litter distribution and the accumulation of organic carbon in soil. The study showed a significant influence of this thick animal on the processes taking place in the soil. Significant correlations were observed between the organic carbon content in the litter and the organic carbon content in the soil, macrofauna activity with litter decomposition and its influence on the organic carbon accumulation.


2016 ◽  
Vol 62 (4) ◽  
pp. 155-158
Author(s):  
Ján Horák ◽  
Vladimír Šimanský

Abstract An experiment of different application rates of biochar and biochar combined with nitrogen fertiliser was conducted at experimental field on a Haplic Luvisol located in Nitra region of Slovakia during the growing season of spring barley (2014). The aim of this study was to evaluate the effects of biochar and biochar combined with nitrogen fertilisation on the soil organic carbon (SOC). The treatments consisted of 0, 10 and 20 t/ha of biochar application (B0, B10 and B20) combined with 0, 40 and 80 kg/ha N of nitrogen fertiliser applied (N0, N40 and N80). The results showed that SOC content at the beginning and end of the trial was always higher at the plots amended with biochar as compared to control plots (B0N0, B0N40 and B0N80); however, statistically significant effects were observed only at the beginning of the trial as well as at the end of trial in B20N40 treatments. Overall, the highest values of SOC contents were obtained at the beginning as well as at the end of the trial when 10 and 20 t/ha of biochar was applied together with 40 kg/ha N.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


2021 ◽  
Vol 24 ◽  
pp. e00367
Author(s):  
Patrick Filippi ◽  
Stephen R. Cattle ◽  
Matthew J. Pringle ◽  
Thomas F.A. Bishop

2021 ◽  
Author(s):  
Christoph Rosinger ◽  
Michael Bonkowski

AbstractFreeze–thaw (FT) events exert a great physiological stress on the soil microbial community and thus significantly impact soil biogeochemical processes. Studies often show ambiguous and contradicting results, because a multitude of environmental factors affect biogeochemical responses to FT. Thus, a better understanding of the factors driving and regulating microbial responses to FT events is required. Soil chronosequences allow more focused comparisons among soils with initially similar start conditions. We therefore exposed four soils with contrasting organic carbon contents and opposing soil age (i.e., years after restoration) from a postmining agricultural chronosequence to three consecutive FT events and evaluated soil biochgeoemical responses after thawing. The major microbial biomass carbon losses occurred after the first FT event, while microbial biomass N decreased more steadily with subsequent FT cycles. This led to an immediate and lasting decoupling of microbial biomass carbon:nitrogen stoichiometry. After the first FT event, basal respiration and the metabolic quotient (i.e., respiration per microbial biomass unit) were above pre-freezing values and thereafter decreased with subsequent FT cycles, demonstrating initially high dissimilatory carbon losses and less and less microbial metabolic activity with each iterative FT cycle. As a consequence, dissolved organic carbon and total dissolved nitrogen increased in soil solution after the first FT event, while a substantial part of the liberated nitrogen was likely lost through gaseous emissions. Overall, high-carbon soils were more vulnerable to microbial biomass losses than low-carbon soils. Surprisingly, soil age explained more variation in soil chemical and microbial responses than soil organic carbon content. Further studies are needed to dissect the factors associated with soil age and its influence on soil biochemical responses to FT events.


Sign in / Sign up

Export Citation Format

Share Document