scholarly journals Detection of various U and M chromosomes in wheat-Aegilops biuncialis hybrids and derivatives using fluorescence in situ hybridisation and molecular markers

2012 ◽  
Vol 48 (No. 4) ◽  
pp. 169-177 ◽  
Author(s):  
A. Schneider ◽  
M. Molnár-Láng

The aim of the study was to select wheat-Aegilops biuncialis addition lines carrying Aegilops biuncialis chromosomes differing from those which were introgressed into the wheat-Ae. biuncialis addition lines produced earlier in Martonv&aacute;s&aacute;r, Hungary. In the course of the experiments new wheat-Ae. biuncialis addition lines carrying chromosomes 2U<sup>b</sup>, 6M<sup>b</sup>, 6U<sup>b</sup>; 5U<sup>b</sup>, 3U<sup>b</sup>, 7U<sup>b</sup>; 5M<sup>b</sup>, 6M<sup>b</sup> and 7M<sup>b</sup> were selected. The 2U<sup>b</sup> disomic addition line is relatively stable, as 91% of the progenies contain this chromosome pair. The 6M<sup>b</sup> disomic addition line proved to be dwarf and sterile, but it still exists as a monosomic addition line. Progenies analysed from the 6U<sup>b</sup> monosomic addition line did not carry the 6U<sup>b</sup> chromosome. One plant containing the 5U<sup>b</sup>, 3U<sup>b</sup> and 7U<sup>b</sup> chromosomes and one plant carrying 5M<sup>b</sup>, 6M<sup>b</sup> and 7M<sup>b</sup> chromosomes showed very low fertility. Each of the plants produced a single seed, but seeds of the parent plants are still available. Line No. 49/00 carried a submetacentric Ae. biuncialis chromosome pair and the chromosome number 44 has been constant for several generations. After FISH no hybridisation site was observed on the Ae. biuncialis chromosome pair using the pSc119.2 and Afa family repetitive DNA probes, so it was not possible to identify the Ae. biuncialis chromosome pair. However, the use of wheat SSR markers and the (GAA)<sub>n</sub> microsatellite DNA probe allowed it to be characterised more accurately. These new lines facilitate gene transfer from Ae. biuncialis into cultivated wheat and the selection of U and M genome-specific wheat SSR markers.&nbsp;

1982 ◽  
Vol 24 (2) ◽  
pp. 201-206 ◽  
Author(s):  
T. Ryu Endo

Single chromosomes from Aegilops triuncialis L. (2n = 28, CCCuCu), Ae. sharonensis Eig (2n = 14, S1S1), and Ae. longissima S. &M. (2n = 14, S1S1) were added respectively to common wheat Triticum aestivum L. cv. 'Selkirk' (2n = 42, AABBDD) in monosomic condition and confirmed to have a gametocidal action on common wheat gametes lacking the Agilops chromosome. Three double monosomic addition lines, which had two of the three Aegilops chromosomes, were produced from the monosomic addition lines, and relationships among the three Aegilops chromosomes were studied. The Aegilops chromosomes did not pair with one another in the double monosomic addition lines. In the progeny of the double monosomic addition lines with the triuncialis and sharonensis chromosomes or with the triuncialis and longissima chromosomes, both Aegilops chromosomes were almost always transmitted through male and female gametes. In the progeny of the double monosomic addition line with the sharonensis and longissima chromosomes, only the longissima chromosome was preferentially transmitted through male and female gametes. Thus, the three Aegilops chromosomes were proved to be different from one another in the gametocidal action in common wheat.


Genome ◽  
2002 ◽  
Vol 45 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Shin Taketa ◽  
Masayuki Choda ◽  
Ryoko Ohashi ◽  
Masahiko Ichii ◽  
Kazuyoshi Takeda

Addition of the long arm of barley chromosome 1H (1HL) to wheat causes severe meiotic abnormalities and complete sterility of the plants. To map the barley gene responsible for the 1H-induced sterility of wheat, a series of addition lines of translocated 1H chromosomes were developed from the crosses between the wheat 'Shinchunaga' and five reciprocal translocation lines derived from the barley line St.13559. Examination of the seed fertility of the addition lines revealed that the sterility gene is located in the interstitial 25% region of the 1HL arm. The genetic location of the sterility gene was also estimated by physically mapping sequence-tagged site (STS) markers and simple-sequence repeat (SSR) markers with known map locations. The sterility gene is designated Shw (sterility in hybrids with wheat). Comparison of the present physical map of 1HL with two previously published genetic maps revealed a paucity of markers in the proximal 30% region and non-random distribution of SSR markers. Two inconsistencies in marker order were found between the present physical map and the consensus genetic map of group 1 chromosomes of Triticeae. On the basis of the effects on meiosis and chromosomal location, the relationship of the present sterility gene with other fertility-related genes of Triticeae is discussed.Key words: Hordeum vulgare, molecular markers, sterility, translocation, wheat–barley chromosome addition line.


2009 ◽  
Vol 59 (2) ◽  
pp. 203-206 ◽  
Author(s):  
Michiko Akaba ◽  
Yukio Kaneko ◽  
Katsunori Hatakeyama ◽  
Masahiko Ishida ◽  
Sang Woo Bang ◽  
...  

2012 ◽  
Vol 169 (9) ◽  
pp. 839-850 ◽  
Author(s):  
Le Yang ◽  
Chunquan Ma ◽  
Linlin Wang ◽  
Sixue Chen ◽  
Haiying Li

Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1029-1036 ◽  
Author(s):  
Xiaofei Yang ◽  
Xin Li ◽  
Changyou Wang ◽  
Chunhuan Chen ◽  
Zengrong Tian ◽  
...  

A common wheat – Leymus mollis (2n = 4x = 28, NsNsXmXm) double monosomic addition line, M11003-4-3-8/13/15 (2n = 44 = 42T.a + L.m2 + L.m3), with stripe rust resistance was developed (where T.a represents Triticum aestivum chromosome, L.m represents L. mollis chromosome, and L.m2/3 represents L. mollis chromosome of homoeologous groups 2 and 3). The progenies of line M11003-4-3-8/13/15 were characterized by cytological observation, specific molecular markers, fluorescence in situ hybridization (FISH), and genomic in situ hybridization (GISH). Among the progenies, there existed five different types (I, II, III, IV, and V) of chromosome constitution, the formulas of which were 2n = 44 = 42T.a + 1L.m2 + 1L.m3, 2n = 43 = 42T.a + 1L.m2, 2n = 43 = 42T.a + 1L.m3, 2n = 42 = 42T.a, and 2n = 44 = 42T.a + 2L.m2, respectively. Field disease screening showed that types I and III showed high resistance to stripe rust, while types II, IV, and V were susceptible. Leymus mollis was almost immune to stripe rust, whereas the wheat parent, cultivar 7182, was susceptible. Therefore, we concluded that the stripe rust resistance originated from L. mollis. These various lines could be further fully exploited as important disease resistance materials to enrich wheat genetic resources.


Genome ◽  
1988 ◽  
Vol 30 (4) ◽  
pp. 559-564 ◽  
Author(s):  
B. P. Forster ◽  
T. E. Miller ◽  
C. N. Law

Two wheat – Agropyron junceum disomic addition lines homoeologous to groups 2 and 5 were tested for tolerance to salt. The experiments included germination and growth to maturity at various concentrations of sodium chloride (NaCl). The results were compared with those of wheat lines tetrasomic for chromosomes 2A, 2B, 2D, 5A, 5B, and 5D and also with the wheat parent 'Chinese Spring', and the salt-tolerant 'Chinese Spring' – A. junceum amphiploid. The addition of homoeologous group 2 chromosomes reduced the tolerance to salt relative to 'Chinese Spring' in every case. The order of tolerance was ranked as 'Chinese Spring' > 2J disomic addition line > tetra 2A = tetra 2D > tetra 2B. The addition of wheat group 5 chromosomes was either equal to 'Chinese Spring' or worse with respect to tolerance to salt. However, the disomic addition line for 5J showed considerable tolerance to salt and at 200 mol m−3 NaCl produced a similar response to that of the amphiploid in producing fertile tillers. Both produced viable grain, but the grain produced by the 5J addition line at 200 mol−3 NaCl was small and shrivelled, unlike the plump grain produced by the amphiploid. The order of tolerance was ranked as amphiploid > 5J addition line > 'Chinese Spring' = tetra 5A > tetra 5B = tetra 5D. It is concluded that there are genes on the group 2 chromosomes that confer susceptibility to salt and that chromosome 5J of A. junceum carries a major gene(s) for tolerance to salt. The potential for transferring this character into wheat is discussed. A hypothesis is also proposed to explain the function of the salt-tolerance gene(s) at critical stages in the life cycle of wheat.Key words: salt tolerance, wheat, Agropyron junceum, disomic addition lines.


Sign in / Sign up

Export Citation Format

Share Document