Salt tolerance of two wheat – Agropyron junceum disomic addition lines

Genome ◽  
1988 ◽  
Vol 30 (4) ◽  
pp. 559-564 ◽  
Author(s):  
B. P. Forster ◽  
T. E. Miller ◽  
C. N. Law

Two wheat – Agropyron junceum disomic addition lines homoeologous to groups 2 and 5 were tested for tolerance to salt. The experiments included germination and growth to maturity at various concentrations of sodium chloride (NaCl). The results were compared with those of wheat lines tetrasomic for chromosomes 2A, 2B, 2D, 5A, 5B, and 5D and also with the wheat parent 'Chinese Spring', and the salt-tolerant 'Chinese Spring' – A. junceum amphiploid. The addition of homoeologous group 2 chromosomes reduced the tolerance to salt relative to 'Chinese Spring' in every case. The order of tolerance was ranked as 'Chinese Spring' > 2J disomic addition line > tetra 2A = tetra 2D > tetra 2B. The addition of wheat group 5 chromosomes was either equal to 'Chinese Spring' or worse with respect to tolerance to salt. However, the disomic addition line for 5J showed considerable tolerance to salt and at 200 mol m−3 NaCl produced a similar response to that of the amphiploid in producing fertile tillers. Both produced viable grain, but the grain produced by the 5J addition line at 200 mol−3 NaCl was small and shrivelled, unlike the plump grain produced by the amphiploid. The order of tolerance was ranked as amphiploid > 5J addition line > 'Chinese Spring' = tetra 5A > tetra 5B = tetra 5D. It is concluded that there are genes on the group 2 chromosomes that confer susceptibility to salt and that chromosome 5J of A. junceum carries a major gene(s) for tolerance to salt. The potential for transferring this character into wheat is discussed. A hypothesis is also proposed to explain the function of the salt-tolerance gene(s) at critical stages in the life cycle of wheat.Key words: salt tolerance, wheat, Agropyron junceum, disomic addition lines.

1974 ◽  
Vol 16 (2) ◽  
pp. 399-417 ◽  
Author(s):  
J. Dvorak ◽  
D. R. Knott

A set of disomic addition lines was produced in which each chromosome of Agropyron elongatum (2n = 14) was added to the chromosome complement of Triticum aestivum cv. Chinese Spring. In addition a complete set of ditelosomic addition lines involving Agropyron chromosome arms IS, IIα, IIIα, IVS, IVL, VS, VL, VIS and VIIα, was developed. Except for disomic addition line VII which is similar to Chinese Spring, each added alien chromosome pair was found to have a specific effect on plant morphology. Five disomic addition lines had reduced fertility. Agropyron chromosome arms carrying genes for anthocyanin production, waxless foliage, tenacious glumes, and several other traits were identified. The single Agropyron chromosomes in the monosomic addition lines usually have either minor effects or no effect on plant morphology and fertility.The disomic addition lines are similar in many characters to tetrasomics of the corresponding homoeologous wheat chromosomes and show characters that are not present in either Ag. elongatum or the amphiploid, T. aestivum × Ag. elongatum. Thus many of the effects are due to gene dosage. If individual disomic addition lines are compared with the amphiploid a significant role of interchromosomal gene interactions is apparent.In combination with knowledge of the homoeologous relationships among wheat and alien chromosomes, sets of disomic addition lines can provide valuable information on the evolutionary past of genomes in Triticinae. In monosomic addition lines only Agropyron chromosome IV paired with a wheat chromosome and it is concluded that it is improbable that Agropyron genomes played any role in the evolution of the polyploid series of Aegilops and Triticum.


1974 ◽  
Vol 16 (3) ◽  
pp. 627-637 ◽  
Author(s):  
J. Dvořák ◽  
F. W. Sosulski

Alien disomic and ditelosomic addition lines and disomic substitution lines involving the recipient wheat cultivar Chinese Spring and each of the seven chromosomes of diploid Agropyron elongatum were used to study the distribution of genes affecting date of heading, maturity, tillering, plant height and weight, seed protein content and components of seed yield in the Agropyron genome. Four Agropyron chromosomes, III, IV, V, and VI, affected days to heading and maturity but only chromosome VI conditioned early heading date. Complementary genes on opposite arms of the alien chromosome were responsible for late maturity in disomic addition line V. Tillering was affected by chromosome II which reduced the number of tillers per plant and by chromosome IV which increased the number. Plant height was increased by chromosome II and decreased in the presence of chromosomes III, IV, V and VI. Seed weight was increased in disomic addition lines II, III and VI while it was decreased in dosomic addition line V. Seed shrivelling, which was apparent in the amphiploid, Ag. elongatum × Chinese Spring, is controlled by Agropyron chromosome II. The number of seeds per spike was affected by six and seed yield by seven Agropyron chromosomes. Except for one line, the disomic addition lines and one substitution line showed significantly higher seed protein content than Chinese Spring. However, it was shown that yield depression accounted for a large portion of the increase in protein content. To remove this factor, the actual protein content in each line was compared with the adjusted protein content obtained from the regression of protein content on yield. Then it appeared that five of the seven Agropyron chromosomes are implicated in the control of seed protein. The amino acid compositions of proteins in the Agropyron-wheat derivatives were uniform and did not differ from Chinese Spring. It was shown that genes on Agropyron and wheat homoeologous chromosomes frequently have related effects on the characters studied. Because of genetic similarity among Agropyron and wheat homoeologues, the alien substitution lines tend to be superior to the alien addition lines in which the deleterious characters are largely caused by gene dosage effects. It is suggested that interlocus gene interactions play a significant role in the control of quantitative characters in this Agropyron genotype.


2020 ◽  
Vol 21 (11) ◽  
pp. 4053
Author(s):  
Liqiang Song ◽  
Hui Zhao ◽  
Zhi Zhang ◽  
Shuai Zhang ◽  
Jiajia Liu ◽  
...  

Production of wheat-alien disomic addition lines is of great value to the exploitation and utilization of elite genes originated from related species to wheat. In this study, a novel wheat-Aegilops biuncialis 5Mb disomic addition line WA317 was characterized by in situ hybridization (ISH) and specific-locus amplified fragment sequencing (SLAF-seq) markers. Compared to its parent Chinese Spring (CS), the glumes of WA317 had black color and were difficult to remove after harvesting, suggesting chromosome 5Mb carried gene(s) related to glume development and Triticeae domestication process. A total of 242 Ae. biuncialis SLAF-based markers (298 amplified patterns) were developed and further divided into four categories by Ae. biuncialis Y17, Ae. umbellulata Y139 and Ae. comosa Y258, including 172 markers amplifying the same bands of U and M genome, six and 102 markers amplifying U-specific and M-specific bands, respectively and eighteen markers amplifying specific bands in Y17. Among them, 45 markers had the specific amplifications in WA317 and were 5Mb specific markers. Taken together, line WA317 with tenacious and black glumes should serve as the foundation for understanding of the Triticeae domestication process and further exploitation of primitive alleles for wheat improvement. Ae. biuncialis SLAF-based markers can be used for studying syntenic relationships between U and M genomes as well as rapid tracking of U and M chromosomal segments in wheat background.


1984 ◽  
Vol 26 (1) ◽  
pp. 25-33 ◽  
Author(s):  
J. Orellana ◽  
M. C. Cermeño ◽  
J. R. Lacadena

Chromosome pairing was examined in wheat–rye addition and substitution lines using the C-banding technique. It was found that both rye and wheat chromosomes affect each other's homologous pairing. The strongest diminution of wheat pairing (measured as bound arms per cell) was produced by chromosome 5R of rye (7.5 and 7.2% in 'Chinese Spring' – 'Imperial' and 'Holdfast' – 'King II' addition lines, respectively). The weakest diminution of wheat pairing was produced by chromosome 3R in the 'Chinese Spring' – 'Imperial' addition line (1.1%). The diminution of rye chromosome pairing produced by wheat chromosomes ranges from 6.9 to 48.4% ('Chinese Spring' – 'Imperial' and 'Holdfast' – 'King II' addition lines, respectively). When put into a wheat background, the rye chromosomes suffer a worse fate than the wheat chromosomes. For example, chromosome 6R reduces the wheat complement pairing in the 'Holdfast' – 'King II' addition line by 3.8% but its own pairing is reduced by 41.4%. The decrease in pairing of both wheat and rye homologous chromosomes in addition and substitution lines is a complex process in which factors such as genes controlling meiotic pairing, constitutive heterochromatin, and cryptic wheat–rye interactions can play important roles.


Genome ◽  
1995 ◽  
Vol 38 (1) ◽  
pp. 8-16 ◽  
Author(s):  
D. Bai ◽  
G. J. Scoles ◽  
D. R. Knott

In order to counteract the effects of the mutant genes in races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) in wheat, exploration of new resistance genes in wheat relatives is necessary. Three accessions of Triticum cylindricum Ces. (4x, CCDD), Acy1, Acy9, and Acy11, were tested with 10 races each of leaf rust and stem rust. They were resistant to all races tested. Viable F1 plants were produced from the crosses of the T. cylindricum accessions as males with susceptible MP and Chinese Spring ph1b hexaploid wheats (T. aestivum, 6x, AABBDD), but not with susceptible Kubanka durum wheat (T. turgidum var. durum, 4x, AABB), even with embryo rescue. In these crosses the D genome of hexaploid wheat may play a critical role in eliminating the barriers for species isolation during hybrid seed development. The T. cylindricum rust resistance was expressed in the F1 hybrids with hexaploid wheat. However, only the cross MP/Acy1 was successfully backcrossed to another susceptible hexaploid wheat, LMPG-6. In the BC2F2 of the cross MP/Acy1//LMPG-6/3/MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 (infection types (IT) 1=, 1, or 1+; addition line 1) or stem rust race 15B-1 (IT 1 or 1+; addition line 2) were selected. Rust tests and examination of chromosome pairing of the F1 hybrids and the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. cylindricum C-genome chromosomes rather than on the D-genome chromosomes. The T. cylindricum chromosome in addition line 2 was determined to be chromosome 4C through the detection of RFLPs among the genomes using a set of homoeologous group-specific wheat cDNA probes. Addition line 1 was resistant to the 10 races of leaf rust and addition line 2 was resistant to the 10 races of stem rust, as was the T. cylindricum parent. The added C-genome chromosomes occasionally paired with hexaploid wheat chromosomes. Translocation lines with rust resistance (2n = 21 II) may be obtained in the self-pollinated progeny of the addition lines through spontaneous recombination of the C-genome chromosomes and wheat chromosomes. Such translocation lines with resistance against a wide spectrum of rust races should be potentially valuable in breeding wheat for rust resistance.Key words: wheat, Triticum cylindricum, rust resistance, gene transfer, addition line, molecular cytogenetics.


Genome ◽  
1994 ◽  
Vol 37 (3) ◽  
pp. 410-418 ◽  
Author(s):  
D. Bai ◽  
G. J. Scoles ◽  
D. R. Knott

Six accessions of Triticum triaristatum (Willd) Godr. &Gren. (syn. Aegilops triaristata) (6x, UUMMUnUn), having good resistance to both leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm) races and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) races, were successfully crossed with both susceptible durum wheats (T. turgidum var. durum L., 2n = 28, AABB) and bread wheats (T. aestivum, 2n = 42, AABBDD). In some crosses, embryo rescue was necessary. The T. triaristatum resistance was expressed in all F1 hybrids. Backcrossing of the F1 hybrids to their wheat parents to produce BC1F1 plants was more difficult (seed set 0–7.14%) than to produce F1 hybrids (seed set 12.50–78.33%). The low female fertility of the F1 hybrids was due to low chromosome pairing. Only gametes with complete or nearly complete genomes from the F1 hybrids were viable. In BC2F4 populations from the cross MP/Ata2//2*MP, monosomic or disomic addition lines (2n = 21 II + 1 I or 22 II) with resistance to leaf rust race 15 (IT 1) were selected. In BC2F2 populations from the crosses CS/Ata4//2*MP and MP/Ata4//2*MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 or stem rust race 15B-1 (both IT 1) were selected. Rust tests and cytology on the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. triaristatum chromosomes. The homoeologous groups of the T. triaristatum chromosomes in the addition lines from the crosses MP/Ata2//2*MP, CS/Ata4//2*MP, and MP/Ata4//2*MP were determined to be 5, 2, and 7, respectively, through the detecting of RFLPs among genomes using a set of homoeologous group specific wheat cDNA probes. The addition lines with resistance to leaf rust race 15 from the crosses MP/Ata2//2*MP and CS/Ata4//2*MP were resistant to another nine races of leaf rust and the addition line with resistance to stem rust race 15B-1 from the cross MP/Ata4//2*MP was resistant to another nine races of stem rust as were their T. triaristatum parents. Since such genes provide resistance against a wide spectrum of rust races they should be very valuable in wheat breeding for rust resistance.Key words: Triticum triaristatum, rust resistance, addition line, molecular cytogenetics.


1983 ◽  
Vol 41 (2) ◽  
pp. 181-202 ◽  
Author(s):  
Gary E. Hart ◽  
Neal A. Tuleen

SUMMARYThe zymogram phenotypes of 11 enzymes were determined for 22 Triticum aestivum cv. Chinese Spring-Elytrigia elongata disomic and ditelosomic chromosome addition lines. Eleven isozyme structural genes were located in specific arms of six E. elongata chromosomes, as follows: Gpi-E1 in 1ES, Est-E1 in 3ES, Got-E3 in 3EL, Adh-E1 and Lpx-E1 in 4ES, Adh-E2 and Lpx-E2 in 5EL, Amp-E1 in 6Eα, Adh-E3 and Got-E2 in 6Eβ, and Ep-E1 in 7EL. The E. elongata chromosomes present in five disomic addition lines have previously been designated 1E, 2E, 4E, 6E, and 7E to indicate their homoeology with Chinese Spring chromosomes. The results of this study support these designations. The development of disomic putative 3E and 5E addition lines is reported. The added chromosomes designated IV, V, and VI that are present in three of the seven original disomic T. aestivum-E. elongata addition lines are translocated. Evidence that VL and VIL are opposite arms of 2E and that IV is partially homoeologous to 3E has been published. The results reported in this paper indicate that IVS = 3ES, IVL = 7EL, VS = 3ES, and VIS = 5ES and are consistent with VL and VIL being opposite arms of 2E. The synteny relationships of the 11 E. elongata isozyme genes identified in this study are fully consistent with those of homoeologous T. aestivum cv. Chinese Spring genes and thus provide evidence that the gene synteny groups which these two species inherited from their common ancestor are conserved. This study further documents the valuable role that studies of isozyme genes can play in the isolation, characterization, and maintenance of alien chromosomes, telosomes, and chromosomal segments in wheat strains.


2012 ◽  
Vol 48 (No. 4) ◽  
pp. 169-177 ◽  
Author(s):  
A. Schneider ◽  
M. Molnár-Láng

The aim of the study was to select wheat-Aegilops biuncialis addition lines carrying Aegilops biuncialis chromosomes differing from those which were introgressed into the wheat-Ae. biuncialis addition lines produced earlier in Martonv&aacute;s&aacute;r, Hungary. In the course of the experiments new wheat-Ae. biuncialis addition lines carrying chromosomes 2U<sup>b</sup>, 6M<sup>b</sup>, 6U<sup>b</sup>; 5U<sup>b</sup>, 3U<sup>b</sup>, 7U<sup>b</sup>; 5M<sup>b</sup>, 6M<sup>b</sup> and 7M<sup>b</sup> were selected. The 2U<sup>b</sup> disomic addition line is relatively stable, as 91% of the progenies contain this chromosome pair. The 6M<sup>b</sup> disomic addition line proved to be dwarf and sterile, but it still exists as a monosomic addition line. Progenies analysed from the 6U<sup>b</sup> monosomic addition line did not carry the 6U<sup>b</sup> chromosome. One plant containing the 5U<sup>b</sup>, 3U<sup>b</sup> and 7U<sup>b</sup> chromosomes and one plant carrying 5M<sup>b</sup>, 6M<sup>b</sup> and 7M<sup>b</sup> chromosomes showed very low fertility. Each of the plants produced a single seed, but seeds of the parent plants are still available. Line No. 49/00 carried a submetacentric Ae. biuncialis chromosome pair and the chromosome number 44 has been constant for several generations. After FISH no hybridisation site was observed on the Ae. biuncialis chromosome pair using the pSc119.2 and Afa family repetitive DNA probes, so it was not possible to identify the Ae. biuncialis chromosome pair. However, the use of wheat SSR markers and the (GAA)<sub>n</sub> microsatellite DNA probe allowed it to be characterised more accurately. These new lines facilitate gene transfer from Ae. biuncialis into cultivated wheat and the selection of U and M genome-specific wheat SSR markers.&nbsp;


2011 ◽  
Vol 356-360 ◽  
pp. 236-239
Author(s):  
Chang Hong Guo ◽  
Lei Yang ◽  
Chun Ying Liu

Thinopyrum elongatum, a wild relative of wheat, can be used as an excellent source of disease and abiotic stresses resistance and carries several useful traits, which have been transferred into wheat by interspecific hybridization. The most effective method of transferring the profitable genes of Th. elongatum into wheat is to induce chromosome recombination by the gametocidal system. In this study, cross, backcross and selfcross were performed between Chinese Spring-Th. elongatum 3E disomic addition line and Chinese Spring-Ae. cylindrica gametocidal chromosome 2C disomic addition line, and the gametocidal chromosome would induce chromosome breakages and aberrations. The chromosome counts of somatic cell and the observation of PMCs metaphase were performed in F2, BC1F1and F1, F2plants, respectively, the results showed that the gametocidal chromosome was functioning during the formation of gametes. The gametocidal chromosome 2C induced segregation for spike type in F2and BC1F1plants. Thus, the gametocidal chromosome 2C was demonstrated to be effective on transferring Th. elongatum 3E chromosome into wheat.


Sign in / Sign up

Export Citation Format

Share Document