scholarly journals Selenium effect on wheat grain yield and quality applied in different growth stages

Author(s):  
Alexandra Zapletalová ◽  
Ladislav Ducsay ◽  
Marek Slepčan ◽  
Mária Vicianová ◽  
Peter Hozlár ◽  
...  

Small field plot experiments were carried out at the testing station of the Central Control and Testing Institute in Agriculture in Veľký Meder (Slovakia) in the experimental years 2014/2015, 2015/2016 and 2016/2017. Selenium salts in the form of sodium selenite and sodium selenate were applied in growth phases: end of tillering (BBCH 29) and flag leaf ligule and collar visible (BBCH 39). The effect of experimental years 2014/2015, 2015/2016 and 2016/2017 on the yield of wheat grain was not statistically significant within the observed variants. The achieved mean yields were in the range from 10.06 ± 0.81 to 11.07 ± 0.29 t/ha in 2014/2015, from 9.82 ± 0.54 to 10.32 ± 0.10 t/hain 2015/2016 and from 11.23 ± 0.76 to 11.64 ± 0.51 t/ha in 2016/2017. Selenate in comparison with selenite influenced the selenium accumulation in wheat grains more positively. However, a significant difference was recorded in variants with selenite application in the flag leaf growth phase in comparison with the end of tillering phase. The influence on the content of macroelements P, K, Ca and microelements Cu and Fe was observed in sodium selenite only; its application decreased the element content in comparison with the control variant. Statistically significantly higher values of fiber and fat were achieved after application of selenium in the flag leaf growth stage in comparison with the end of tillering.  

2005 ◽  
Vol 85 (1) ◽  
pp. 59-65 ◽  
Author(s):  
S. S. Malhi ◽  
L. Cowell ◽  
H. R. Kutcher

A field experiment was conducted to determine the relative effectiveness of various sources, methods, times and rates of Cu fertilizers on grain yield, protein concentration in grain, concentration of Cu in grain and uptake of Cu in grain of wheat (Triticum aestivum L.), and residual concentration of DTPA-extractable Cu in soil on a Cu-deficient soil near Porcupine Plain in northeastern Saskatchewan. The experiment was conducted from 1999 to 2002 on the same site, but the results for 2002 were not presented because of very low grain yield due to drought in the growing season. The 25 treatments included soil application of four granular Cu fertilizers (Cu lignosulphonate, Cu sulphate, Cu oxysulphate I and Cu oxysulphate II) as soil-incorporated (at 0.5 and 2.0 kg Cu ha-1), seedrow-placed (at 0.25 and 1.0 kg Cu ha-1) and foliar application of four solution Cu fertilizers (Cu chelate-EDTA, Cu sequestered I, Cu sulphate/chelate and Cu sequestered II at 0.25 kg Cu ha-1) at the four-leaf and flag-leaf growth stages, plus a zero-Cu check. Soil was tilled only once to incorporate all designated Cu and blanket fertilizers into the soil a few days prior to seeding. Wheat plants in the zero-Cu treatment exhibited Cu deficiency in all years. For foliar application at the flag-leaf stage, grain yield increased with all four of the Cu fertilizers in 2000 and 2001, and in all but Cu sequestered II in 1999. Foliar application at the four-leaf growth stage of three Cu fertilizers (Cu chelate-EDTA, Cu sequestered I and Cu sulphate/chelate), soil incorporation of all Cu fertilizers at 2 kg Cu ha-1 and two Cu fertilizers (Cu lignosulphonate and Cu sulphate) at 0.5 kg Cu ha-1 rate, and seedrow placement of two Cu fertilizers (Cu lignosulphonate and Cu sulphate) at 1 kg Cu ha-1 increased grain yield of wheat only in 2001. There was no effect of Cu fertilization on protein concentration in grain. The increase in concentration and uptake of Cu in grain from Cu fertilization usually showed a trend similar to grain yield. There was some increase in residual DTPA-extractable Cu in the 0–60 cm soil in Cu lignosulphonate, Cu sulphate and Cu oxysulphate II soil incorporation treatments, particularly at the 2 kg Cu ha-1 rate. In summary, the results indicate that foliar application of Cu fertilizers at the flag-leaf growth stage can be used for immediate correction of Cu deficiency in wheat. Because Cu deficiency in crops often occurs in irregular patches within fields, foliar application may be the most practical and economical way to correct Cu deficiency during the growing season, as lower Cu rates can correct Cu deficiency. Key words: Application time, Cu source, foliar application, granular Cu, growth stage, placement method, rate of Cu, seedrow-placed Cu, soil incorporation


Sign in / Sign up

Export Citation Format

Share Document