scholarly journals Determination of the proper time for mating after oestrous synchronisation during anoestrous or oestrous by measuring electrical resistance of cervical mucus in ewes

2016 ◽  
Vol 60 (No. 2) ◽  
pp. 87-93 ◽  
Author(s):  
E. Theodosiadou ◽  
T. Tsiligianni
2009 ◽  
Vol 5 (S260) ◽  
pp. 514-521
Author(s):  
Ilias M. Fernini

AbstractThe Islamic society has great ties to astronomy. Its main religious customs (start of the Islamic month, direction of prayer, and the five daily prayers) are all related to two main celestial objects: the Sun and the Moon. First, the start of any Islamic month is related to the actual seeing of the young crescent after the new Moon. Second, the direction of prayer, i.e., praying towards Mecca, is related to the determination of the zenith point in Mecca. Third, the proper time for the five daily prayers is related to the motion of the Sun. Everyone in the society is directly concerned by these customs. This is to say that the major impetus for the growth of Islamic astronomy came from these three main religious observances which presented an assortment of problems in mathematical astronomy. To observe these three customs, a new set of astronomical observations were needed and this helped the development of the Islamic observatory. There is a claim that it was first in Islam that the astronomical observatory came into real existence. The Islamic observatory was a product of needs and values interwoven into the Islamic society and culture. It is also considered as a true representative and an integral par of the Islamic civilisation. Since astronomy interested not only men of science, but also the rulers of the Islamic empire, several observatories have flourished. The observatories of Baghdad, Cairo, Córdoba, Toledo, Maragha, Samarqand and Istanbul acquired a worldwide reputation throughout the centuries. This paper will discuss the two most important observatories (Maragha and Samarqand) in terms of their instruments and discoveries that contributed to the establishment of these scientific institutions.


Author(s):  
Andris Martinovs ◽  
Josef Timmerberg ◽  
Konstantins Savkovs ◽  
Aleksandrs Urbahs ◽  
Paul Beckmann

The paper describes methods developed to determine specific electrical conductivity and relative magnetic permeability of cylindrical steel items and nano-coatings deposited on them by sputtering. Research enables development of a new method for determination of thickness of vacuum deposited nano- coating that is based on application of skin effect.


2012 ◽  
Vol 26 (21) ◽  
pp. 1250136 ◽  
Author(s):  
SAJJAD DEHGHANI ◽  
MOHAMMAD KAZEM MORAVVEJ-FARSHI ◽  
MOHAMMAD HOSSEIN SHEIKHI

We present a model to understand the effect of temperature on the electrical resistance of individual semiconducting single wall carbon nanotubes (s-SWCNTs) of various diameters under various electric fields. The temperature dependence of the resistance of s-SWCNTs and metallic SWCNTs (m-SWCNTs) are compared. These results help us to understand the temperature dependence of the resistance of SWCNTs network. We experimentally examine the temperature dependence of the resistance of random networks of SWCNTs, prepared by dispersing CNTs in ethanol and drop-casting the solution on prefabricated metallic electrodes. Examining various samples with different electrode materials and spacings, we find that the dominant resistance in determination of the temperature dependence of resistance of the network is the resistance of individual tubes, rather than the tube–tube resistance or tube–metal contact resistance. It is also found that the tube–tube resistance depends on the electrode spacing and it is more important for larger electrode spacings. By applying high electric field to burn the all-metallic paths of the SWCNTs network, the temperature dependence of the resistance of s-SWCNTs is also examined. We also investigate the effect of acid treatment of CNTs on the temperature dependence of the resistance of SWCNTs and also multi-wall CNTs (MWCNTs) networks.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 523 ◽  
Author(s):  
Xue-min Zhu ◽  
Yu Li ◽  
Fei Xu ◽  
Wei Gu ◽  
Guo-jun Yan ◽  
...  

The measurement of skin electrical resistance (SER) has drawn a great deal of attention for the rapid screening of transdermal penetration enhancers (PEs). However, the mechanisms underlying the SER measurement are still unclear. This study was to investigate the effects and mechanisms of seven oxygen-containing terpenes on the SER kinetics. Stratum corneum (SC) lipids were proved to play a key role in SER measurement. Then, the factors affecting the SER measurement were optimized. By the determination of SER kinetics, cyclic terpenes (1,8-cineole, terpinen-4-ol, menthol and α-terpineol) were demonstrated to possess higher enhancement ratio (ER) values compared with linear terpenes (linalool, geraniol and citral). For the first time, the linear correlation was found between ER of terpenes and the interaction energy of terpene–ceramide complexes revealed by molecular simulation. The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) analysis revealed that the effect of cyclic terpenes on SC lipid arrangement was obviously stronger than that of linear terpenes. In addition, by evaluating HaCaT skin cell viability, little difference was found between the toxicities of cyclic and linear terpenes. In conclusion, measurement of SER could be a feasible approach for the efficient evaluation of the PEs that mainly act on SC lipids.


Sign in / Sign up

Export Citation Format

Share Document