scholarly journals RESEARCH ON MATERIAL FLOW-STRESS BEHAVIOR AND THE DIE-FORGING PROCESS FOR FORGED-STEEL BRAKE DISCS FOR HIGH-SPEED TRAINS

2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Zhenhong Li ◽  
Chenxing Zhang ◽  
Chenyu Wang ◽  
Yingna Huang

Due to the large size and complicated features, the brake discs of high-speed trains are difficult to forge, so a reasonable design of the process and the die parameter are prerequisites for successful forming. The flow stress of 23CrNiMoV, a forged-steel brake disc material for high-speed trains, was investigated by a uniaxial compression experiment on a Gleeble 1500 test machine. Based on the obtained flow-stress data, a series of numerical simulation analyses of the die forging of high-speed-train brake discs were carried out by using finite-element software. The effects of forging temperature, flash groove parameters and forming speed on the flow filling, forming load and temperature change of metal during die forging were studied. The simulation results were optimized and better process parameters were obtained. Based on the obtained process parameters, the simulation of the forming process was completed and a better forming quality was obtained.

2007 ◽  
Vol 345-346 ◽  
pp. 697-700 ◽  
Author(s):  
Gérard Degallaix ◽  
Philippe Dufrénoy ◽  
Jonathan Wong ◽  
Paul Wicker ◽  
Frédéric Bumbieler

The CRISFIS project (supported by ADEME agency) consists in jointly studying the squealing and cracking aspects of the high power disc brakes for TGV very high speed trains. This paper deals with the progress concerning the cracking part. An experimental and modelling strategy is adopted in order to better understand and predict brake disc cracking. Braking tests conducted on an industrial scale-one test bench are presented. In a first step, the influence of the pad-type on the thermal loading applied to the disc is studied by means of an infrared camera and thermocouples embedded in the pads and in the disc. In a second step, the thermal maps extracted from thermographic monitoring are used as input data for thermal-mechanical calculations. Finally, the results of modelling and tests are compared to the damage observed on the brake discs.


2011 ◽  
Vol 199-200 ◽  
pp. 1492-1495 ◽  
Author(s):  
Guo Shun Wang ◽  
Rong Fu ◽  
Liang Zhao

The simulation calculation on the temperature field of the disc brake system on high-speed trains under the working condition of constant speed at 50Km/h is made. A steady-state calculation model is established according to the actual geometric size of a brake disc and a brake pad, and the analog calculation and simulation on the temperature field of the brake disc and the brake pad by using the large-scale nonlinear finite element software ABAQUS are carried out. The distribution rules of the temperature field of the brake disc and the brake pad under the working condition of constant speed are made known. The surface temperature of the brake disc at friction radius is the highest, with a band distribution for temperature. There exists a temperature flex point in the direction of thickness, of which the thickness occupies 15% of that of the brake disc; due to the small volume of the brake pad, the temperature gradient of the whole brake pad is not sharp, and larger temperature gradient occurs only on the contact surface.


2018 ◽  
Author(s):  
Yi Shi ◽  
Jian Cao ◽  
Kornel F. Ehmann

Compared to the conventional single-point incremental forming (SPIF) processes, water jet incremental micro-forming (WJIMF) utilizes a high-speed and high-pressure water jet as a tool instead of a rigid round-tipped tool to fabricate thin shell micro objects. Thin foils were incrementally formed with micro-scale water jets on a specially designed testbed. In this paper, the effects on the water jet incremental micro-forming process with respect to several key process parameters, including water jet pressure, relative water jet diameter, sheet thickness, and feed rate, were experimentally studied using stainless steel foils. Experimental results indicate that feature geometry, especially depth, can be controlled by adjusting the processes parameters. The presented results and conclusions provide a foundation for future modeling work and the selection of process parameters to achieve high quality thin shell micro products.


2012 ◽  
Vol 226-228 ◽  
pp. 102-105
Author(s):  
Wen Qing Zhu ◽  
Yang Yong Zhu

With the rapid development of high-speed railway in China, the aerodynamic brake is very likely to be an important emergency braking mode of high-speed train in the future. This paper takes aerodynamic braking wing as the object, and uses the finite element software to divide the meshes, then analyses the model influenced by static stress. After simulating the vibratory frequency response of the model in the flow field, it finds that the largest deformation happens in the middle of the upper edge of the wind wing, when the wind speed gets to 500km/h and the load frequency to 4Hz. Some conclusions of this thesis can provide reference for researching the applying the aerodynamic brake in the high-speed trains and laying the foundation for solving the riding and braking safety problems.


Author(s):  
Xianyu Zeng ◽  
Yu Liu ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Yue Zhang ◽  
...  

Abstract The braking performance of the vehicle directly affects the driving safety. Because of the different number of brake pistons and the wear of the brake pads, the distribution of braking pressure will be uneven, which will affect the distribution of temperature field and stress field during braking, then affect the thermal fatigue life of brake discs. Therefore, in this paper, the static tensile and compressive tests of gray cast iron HT200 samples cut from vehicle brake discs are carried out at −25°C, room temperature (25°C) and 500°C, and the stress-strain curves are analyzed to obtain mechanical properties such as strength limit, elastic modulus and so on at the temperature. Based on these parameters, the finite element software ABAQUS is used to simulate the single emergency braking condition. The thermal-structural coupling simulation of brake disc is carried out to study the influences of uneven brake pressure distribution on the temperature and stress fields of brake disc, which lays a foundation for the thermal fatigue life evaluation of brake disc.


2018 ◽  
Vol 1145 ◽  
pp. 123-128
Author(s):  
Ming Deng ◽  
Jiang Po Niu ◽  
Yi Long Ma ◽  
Lin Lv

The selection of the flow stress model of materials has a great influence on the plastic forming simulation of metal. For closed extrusion fine blanking, selecting the accurate and appropriate material flow stress model can make the finite element simulation closer to the real situation, and the simulation data is more reliable. In order to solve the accuracy problem of finite element simulation closed-extruding fine blanking, 5 types of flow stress fitting curve equations were obtained based on the data of sheet metal tensile test. With the secondary development of finite element software Deform-2D, the circular piece of closed-extruding fine blanking forming process was simulated, whose diameter is 14 mm and thickness is 30 mm. The simulation results of different rheological models were compared after physical experiment being carried out.The results show that Ludwik extrapolation rheological model is suitable for finite element simulation of closed-extruding fine blanking technology, which effectively improves closed-extruding fine blanking simulation accuracy. Lay the foundation for the application of closed-extrusion fine blanking in industry.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1214
Author(s):  
Song Zhang ◽  
Xuedao Shu ◽  
Jitai Wang ◽  
Yingxiang Xia

It is necessary to establish a constitutive model of 30CrMoA steel to optimize the forming shape and mechanical properties of high-speed train axles. The experimental stress–strain curve of 30CrMoA steel was obtained by an isothermal compression test on a Gleeble-3500 thermal simulation test machine under temperature of 1273~1423 K and strain rate of 0.01~10 s−1. Considering the effect of strain on the material constant, an empirical constitutive model was proposed with strain correction for 30CrMoA steel. In addition, the material constant in the constitutive model is determined by linear regression analysis of the experimental stress–strain curve. Comparing the theoretical value and experimental value of flow stress, the correlation R is 0.9828 and the average relative error (ARRE) is 4.652%. The constitutive model of 30CrMoA steel with strain correction can reasonably predict the flow stress under various conditions. The results provide an effective numerical tool for further study on accurate near-net forming of high-speed train axles.


2013 ◽  
Vol 554-557 ◽  
pp. 741-748 ◽  
Author(s):  
Joao Pedro M. Correia ◽  
Saïd Ahzi

Electromagnetic forming is a non-conventional forming process and is classified as a high-speed forming process. It provides certain advantages as compared to conventional forming processes: improved formability, high repeatability and productivity, reduction in tooling cost and reduction of springback and of wrinkling. However, various process parameters affect the performance of the electromagnetic forming system. Finite element simulations are very useful to optimize a process because they can reduce time and costs. With the aim of investigating the effects of the process parameters on the deformed blank geometry, finite element simulations of an electromagnetic sheet bulging test have been performed in this work. Furthermore the role of first impulse of discharged current is also investigated.


2014 ◽  
Vol 611-612 ◽  
pp. 1124-1131 ◽  
Author(s):  
Jyoti Kumar Doley ◽  
Sachin D. Kore

Electromagnetic forming (EMF) is a typical high speed forming process using the energy density of a pulsed magnetic field to form work sheets made of metals with high electrical conductivity like aluminium alloys, which have low formability at low strain rate. Under high velocity forming, metallic materials exhibit an increase of flow stress and ductility with increasing deformation rate. Therefore, materials of lower ductility can be deformed to higher strains using high strain rate deformation processes such as electromagnetic or explosive forming techniques. In this paper analysis of an electromagnetic sheet metal forming process is carried out by using commercial finite element software LS-DYNA®, which incorporates a sequential coupling method involving electromagnetic field, structural and thermal solutions. Study of process parameters for forming aluminium ice tray (used in refrigerator) by Electromagnetic forming process has been carried out, simulation was done involving a die, Al worksheet and a spiral coil.


Sign in / Sign up

Export Citation Format

Share Document