scholarly journals The study of the dynamics of the asteroid Kamo`oalewa

Author(s):  
S.A. Guryanov ◽  
◽  
T.Yu. Galushina ◽  

This work is devoted to the study of the motion of the asteroid (469219) Kamo`oalewa, which moves in the orbital resonance 1: 1 with the Earth. During the object dynamics study wedetermined the approaches to the planets of the Solar System, orbital and secular resonances, and evaluated the chaosity of its orbit. A feature of the dynamics of the asteroid under consideration is its constant transitions from the state of quasi-satellite to the state of “horseshoes”.

2006 ◽  
Vol 2 (S236) ◽  
pp. 77-84
Author(s):  
Jianghui Ji ◽  
L. Liu ◽  
G. Y. Li

AbstractWe investigate the secular resonances for massless small bodies and Earth-like planets in several planetary systems. We further compare the results with those of Solar System. For example, in the GJ 876 planetary system, we show that the secular resonances ν1 and ν2 (respectively, resulting from the inner and outer giant planets) can excite the eccentricities of the Earth-like planets with orbits 0.21≤ a <0.50 AU and eject them out of the system in a short timescale. However, in a dynamical sense, the potential zones for the existence of Earth-like planets are in the area 0.50≤ a ≤1.00 AU, and there exist all stable orbits last up to 105 yr with low eccentricities. For other systems, e.g., 47 UMa, we also show that the Habitable Zones for Earth-like planets are related to both secular resonances and mean motion resonances in the systems.


2015 ◽  
Vol 112 (12) ◽  
pp. 3624-3629 ◽  
Author(s):  
Jingeng Sha ◽  
Paul E. Olsen ◽  
Yanhong Pan ◽  
Daoyi Xu ◽  
Yaqiang Wang ◽  
...  

Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth’s geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic–Early Jurassic (∼198–202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth–Mars orbital resonance was in today’s 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


2018 ◽  
Vol 15 (1) ◽  
pp. 12-22
Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article reviewed and analyzed the class of geometrically stable orbits (GUO). The conditions of stability in the model of the geopotential, taking into account the zonal harmonics. The sequence of calculation of the state vector of GUO in the osculating value of the argument of the latitude with the famous Ascoli-royski longitude of the ascending node, inclination and semimajor axis. The simulation is obtained the altitude profiles of SEE regarding the all-earth ellipsoid model of the gravitational field of the Earth given 7 and 32 zonal harmonics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sune G. Nielsen ◽  
David V. Bekaert ◽  
Maureen Auro

AbstractIsotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.


2004 ◽  
Vol 12 (1) ◽  
pp. 111-119
Author(s):  
SIEGFRIED J. BAUER

Planet Earth is unique in our solar system as an abode of life. In contrast to its planetary neighbours, the presence of liquid water, a benign atmospheric environment, a solid surface and an internal structure providing a protective magnetic field make it a suitable habitat for man. While natural forces have shaped the Earth over millennia, man through his technological prowess may become a threat to this oasis of life in the solar system.


2021 ◽  
pp. 647-660
Author(s):  
Steed Vernyl Davidson

The task of identifying a single rationale for the violence on display in the book of Jeremiah may end with a coherent answer, but perhaps not a satisfactory one. That violence serves a reforming purpose seems satisfactory to theological readers in search of theodicy, as well trauma analyses that find the violence problematic but understandable. Other interpreters of Jeremiah, such as feminists and postcolonialists, struggle with the gratuitous and seemingly arbitrary nature of the violence. While not an attempt to rationalize the violence, this chapter engages the arbitrariness of the violence through a systematic analysis of four targets of violence in the book of Jeremiah: the prophet, the feminized Israel/Judah as adulterous wife, foreign nations, and the earth. By distinguishing these separate targets, the chapter examines how gender, sexuality, nationality, and speciesism intersect in the enactment of the rhetorical violence in the book. These delineations also set the stage for a central claim of the chapter, that of exceptional violence. Building upon Carl Schmidt’s notion that exceptional violence stems from exceptional vulnerability that requires the state of exception to use unrestrained violence, the chapter considers how the violence as narrated in Jeremiah not only performs this exceptionalism but also has exceptions. By examining who/what dies from the violence in the book, the chapter points out how the politics of death is played out upon different targets.


Sign in / Sign up

Export Citation Format

Share Document