Possible structure of a local space-time of charged fermions

Author(s):  
V.G. Krechet ◽  
◽  
V.B. Oshurko ◽  
A.E. Baidin ◽  
◽  
...  

In the framework of general relativity, the properties of the local space-time of fermions with an electric charge are considered. It is known that the Dirac spinor field acts locally, as a contact spin-spin interaction of the gravitational and spinor fields and that may lead to some specific properties of spacetime structure. It is shown that this interaction causes real rotation of particles with spin ħ /2. It was found that this rotation is a source of intrinsic magnetic moment for electrically charged particles. As it was found, in this case the local spacetime of charged particles can have the spacetime structure of a passable «wormhole».

Author(s):  
V.G. Krechet ◽  
◽  
V.B. Oshurko ◽  
A.E. Baidin ◽  
◽  
...  

In the framework of general relativity, possible effects of the gravitational interactions in the Dirac spinor field are considered. It is shown that these interactions manifest locally as contact spin-spin interaction of the gravitational and spinor fields. This interaction leads to the classical rotation of particles with spin ħ /2. As a result, it leads to appearance of local internal space-time with specific geometric properties for each particle. New effect of an increase of the mass of spinor particles due to this interaction is found. Also, an explanation of the existence of a magnetic moment in Dirac spinor particles as a result of a local electro-spin-spin interaction has been proposed.


Metaphysics ◽  
2020 ◽  
pp. 82-93
Author(s):  
V. G Krechet

In this article, within the framework of general relativity, the possible effect of the gravitational interaction of Dirac nonlinear spinor fields on the evolution of the Universe, on the formation of astrophysical objects and on the formation of the geometry of the local space-time of elementary particles with spin ħ / 2 is considered.


1979 ◽  
Vol 20 (2) ◽  
pp. 409-413 ◽  
Author(s):  
R. G. McLenaghan ◽  
Ph. Spindel

Author(s):  
Gary Nash

With appropriate modifications, the multi-spin Klein–Gordon (KG) equation of quantum field theory can be adapted to curved space–time for spins 0, 1, 1/2. The associated particles in the microworld then move as a wave at all space–time coordinates. From the existence in a Lorentzian space–time of a line element field [Formula: see text], the spin-1 KG equation [Formula: see text] is derived from an action functional involving [Formula: see text] and its covariant derivative. The spin-0 KG equation and the KG equation of the outer product of a spin-1/2 Dirac spinor and its Hermitian conjugate are then constructed. Thus, [Formula: see text] acts as a fundamental quantum vector field. The symmetric part of the spin-1 KG equation, [Formula: see text], is the Lie derivative of the metric. That links the multi-spin KG equation to Modified General Relativity (MGR) through its energy–momentum tensor of the gravitational field. From the invariance of the action functionals under the diffeomorphism group Diff(M), which is not restricted to the Lorentz group, [Formula: see text] can instantaneously transmit information along [Formula: see text]. That establishes the concept of entanglement within a Lorentzian formalism. The respective local/nonlocal characteristics of MGR and quantum theory no longer present an insurmountable problem to unify the theories.


Author(s):  
F. P. POULIS ◽  
J. M. SALIM

Motivated by an axiomatic approach to characterize space-time it is investigated a reformulation of Einstein's gravity where the pseudo-riemannian geometry is substituted by a Weyl one. It is presented the main properties of the Weyl geometry and it is shown that it gives extra contributions to the trajectories of test particles, serving as one more motivation to study general relativity in Weyl geometry. It is introduced its variational formalism and it is established the coupling with other physical fields in such a way that the theory acquires a gauge symmetry for the geometrical fields. It is shown that this symmetry is still present for the red-shift and it is concluded that for cosmological models it opens the possibility that observations can be fully described by the new geometrical scalar field. It is concluded then that this reformulation, although representing a theoretical advance, still needs a complete description of their objects.


Sign in / Sign up

Export Citation Format

Share Document