scholarly journals Study of Electrical Discharge Machining Parameters on Stainless Steel Using Copper Tool Electrode and Its Effect on the Structure and Electrochemical Properties

2021 ◽  
Vol 68 (2) ◽  
pp. 279-288
Author(s):  
Mozhgan Karimi ◽  
Sayyed Ahmad Nabavi-Amri ◽  
Ahmad Soleymanpour

In this work, the effect of the presence and the diffusion of the Copper from the tool electrode onto the EDMed stainless steel (SS) surface have been investigated by electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD), Quantometer analysis, and Optical microscopic observations. The Taguchi method was used to study the effects of Pulseon time (ton), Pulse-off time (toff), discharge current (I), and overall machining time (τ) on chemical composition, microstructures, micro-cracks, and electrochemical corrosion of EDMed stainless steel workpieces. The results show that the variation of machining parameters changes the chemical composition of the workpieces. By increasing the discharge current and decreasing the Pulse-on time, the copper and the carbon diffuse onto the surface of the workpiece. Consequently, the chemical composition of the workpiece surface changes, leading to an increment of the corrosion resistance. The XRD analysis shows the formation of Fe2C, Cr3C2, and CuNi. In addition, at higher values of discharge current and ton/toff ratio, the micro-cracks propagate on the surface of the workpiece.

2017 ◽  
Vol 266 ◽  
pp. 38-42 ◽  
Author(s):  
Ashish Goyal ◽  
Anand Pandey ◽  
Pooja Sharma

Machinability of aerospace material, Inconel 625 through Wire cut electrical discharge machining has been performed and compared using Taguchi’s Orthogonal L18 (21*35). Normal diffused and cryogenic treated diffused wires are being used as a tool electrode to investigate the effects of machining parameters viz. tool electrode, peak current, pulse on time, pulse off time, wire feed and wire tension on the response MRR. The present study resulted that cryogenic treated tool electrode give better performance in comparison to normal wire electrode assisting in improving stock removal and less electrode wear. Pulse on time and peak current are observed as the most influenced parameter. Scanning Electron Microscopy (SEM) studies has been conducted and presented.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


2020 ◽  
Vol 7 ◽  
pp. 20 ◽  
Author(s):  
Subhashree Naik ◽  
Sudhansu Ranjan Das ◽  
Debabrata Dhupal

Due to the widespread engineering applications of metal matrix composites especially in automotive, aerospace, military, and electricity industries; the achievement of desired shape and contour of the machined end product with intricate geometry and dimensions that are very challenging task. This experimental investigation deals with electrical discharge machining of newly engineered metal matrix composite of aluminum reinforced with 22 wt.% of silicon carbide particles (Al-22%SiC MMC) using a brass electrode to analyze the machined part quality concerning surface roughness and overcut. Forty-six sets of experimental trials are conducted by considering five machining parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken's design of experiments (BBDOEs). This article demonstrates the methodology for predictive modeling and multi-response optimization of machining accuracy and surface quality to enhance the hole quality in Al-SiC based MMC, employing response surface methodology (RSM) and desirability function approach (DFA). Finally, a novel approach has been proposed for economic analysis which estimated the total machining cost per part of rupees 211.08 during EDM of Al-SiC MMC under optimum machining conditions. Thereafter, under the influence of discharge current several observations are performed on machined surface morphology and hole characteristics by scanning electron microscope to establish the process. The result shows that discharge current has the significant contribution (38.16% for Ra, 37.12% in case of OC) in degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The machining data generated for the Al-SiC MMC will be useful for the industry.


Author(s):  
Gregory Bicknell ◽  
Guha Manogharan

Wire electric discharge machining (EDM) is a non-traditional machining method that has the ability to machine hard, conductive materials, with no force and high precision. This technology is used in industries, like the aerospace industry, to create precision parts used in high stress applications. Wire EDM is also commonly used in additive manufacturing (AM) applications to remove printed parts from the base-plates onto which they are printed. Numerous studies show the effects of EDM parameters, like pulse-on time, pulse-off time, and cutting voltage, on the processing of traditionally fabricated metal parts. However, very few studies identify how the parameters of wire EDM affect the processing of AM parts. This paper studies the effect of wire EDM pulse-on time, pulse-off time, and cutting voltage on the machining time, surface roughness, and hardness of additively manufactured 316L stainless steel cylinders. The effects of these wire EDM parameters are then tested on the machining time, surface roughness, and hardness of wrought 316L stainless steel cylinders. It was found that machining time of AM samples was statistically significantly lower than wrought samples and also had better surface finish and lower surface hardness.


2014 ◽  
Vol 3 (2) ◽  
pp. 212
Author(s):  
M. Durairaj ◽  
A.K.S. Ansari ◽  
M. H. Gauthamkumar

Wire Electrical Discharge Machining is a manufacturing process whereby a desired shape is obtained using electrical discharges (or) by repetitive spark cycle. Precision and intricate machining are the strengths. Machining parameters tables provided by the machine tool manufacturers often do not meet the operator requirements. Selection of optimum machining and machining parameters combinations is needed for obtaining higher cutting efficiency and accuracy. In this present study, machining is done using Wire-Cut EDM and optimization of surface roughness is done using Taguchis design of experiments. Experimentation was planned as per Taguchis L16 orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, and pulse OFF time and Wire feed. Dielectric fluid pressure, wire speed, wire tension, resistance and cutting length are taken as fixed parameters. Inconel 800 was selected as a work material to conduct the experiments. From experimental results, the surface roughness was determined for each machining performance criteria. Signal to noise ratio was applied to measure the performance characteristics deviating from the actual value. Finally, experimental confirmation was carried out to identify the effectiveness of this proposed method. Keywords: Optimization; Taguchis L-16 Orthogonal Array; Surface Roughness; S/N Ratio.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


2020 ◽  
Vol 62 (5) ◽  
pp. 481-491
Author(s):  
Engin Nas

Abstract This study investigated the electrical discharge machining (EDM) performance of Ramor 500 Armor steel, a material used in the defense industry for armor production. In addition, the surface quality and amount of material wear of the treated surfaces were determined using different electrical discharge processing parameters for a copper electrode including pulse on-time (99, 150, 225, 300, 351 μs), pulse off-time (10, 15, 23, 30, 35 μs), and discharge current (3, 4, 6, 8, 9 A), at a constant pressure of 1 mm depth of cut. As a result of the experiments, the values related to the material removal rate (MRR) and the surface roughness (Ra) were obtained and the findings analyzed via response surface methodology (RSM). The increase in amperage and pulse on time resulted in an increase in Ra and MRR values. The minimum and maximum Ra and MRR values emerged at currents of 3 and 9 A, respectively. In the experiments performed applying currents of between 3 and 9 A, the white layer widths were measured as 0.0474 mm and 0.0915 mm, respectively. The statistical test results showed that the most effective processing parameters for the MRR were the discharge current amperage (49.01 %) and the pulse off-time (16.51 %), whereas the most effective parameter for the Ra value was the discharge current amperage (79.07 %).


2015 ◽  
Vol 761 ◽  
pp. 303-307 ◽  
Author(s):  
Laily Suraya ◽  
M.A. Ali ◽  
N.I.S. Hussein ◽  
Mohd Razali Muhamad ◽  
Manshoor Bukhari ◽  
...  

The effect of machining parameters on machining characteristics for aluminium alloy LM6 (Al-Sil2) in Electrical Discharge Machining (EDM) die-sinking is studied. The objective of this project is to determine the relationship between the machining parameters including pulse-on time, pulse-off time, peak current and voltage with the machining characterictics such as Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (Ra). Copper materials having diameter 15mm was chosen as the electrode tool. Design of experimenent using Taguchi technique was employed to design experimental matrix that was used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that current and pulse off time significantly affect MRR, EWR and Ra while pulse on time and voltage are less significant in their effect on machining responses. Results show that using Taguchi as a design matrix, the best setting of optimum value for machining parameters to find the required machining responses can be obtained.


2019 ◽  
Vol 16 (4) ◽  
pp. 526-538 ◽  
Author(s):  
Akhil Khajuria ◽  
Modassir Akhtar ◽  
Manish Kumar Pandey ◽  
Mayur Pratap Singh ◽  
Ankush Raina ◽  
...  

Purpose AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study the effects of variation in weight percentage of ceramic Al2O3 particulates during electrical discharge machining (EDM) of stir cast AA2014 composites. Scanning electron microscopy (SEM) examination was carried out to study characteristics of EDMed surface of Al2O3/AA2014 composites. Design/methodology/approach The effect of machining parameters on performance measures during sinker EDM of stir cast Al2O3/AA2014 composites was examined by “one factor at a time” (OFAT) method. The stir cast samples were obtained by using three levels of weight percentage of Al2O3 particulates, i.e. 0 Wt.%, 10 Wt.% and 20 Wt.% with density 1.87 g/cc, 2.35 g/cc and 2.98 g/cc respectively. Machining parameters varied were peak current (1-30 amp), discharge voltage (30-100 V), pulse on time (15-300 µs) and pulse off time (15-450 µs) to study their influence on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR). Findings MRR and SR decreased with an increase in weight percentage of ceramic Al2O3 particulates at the expense of TWR. This was attributed to increased microhardness for reinforced stir cast composites. However, microhardness of EDMed samples at fixed values of machining parameters, i.e. 9 amp current, 60 V voltage, 90 µs pulse off time and 90 µs pulse on time reduced by 58.34, 52.25 and 46.85 per cent for stir cast AA2014, 10 Wt.% Al2O3/AA2014 and 20 Wt.% Al2O3/AA2014, respectively. SEM and quantitative energy dispersive spectroscopy (EDS) analysis revealed ceramic Al2O3 particulate thermal spalling in 20 Wt.% Al2O3/AA2014 composite. This was because of increased particulate weight percentage leading to steep temperature gradients in between layers of base material and heat affected zone. Originality/value This work was an essential step to assess the machinability for material design of Al2O3 reinforced aluminium metal matrix composites (AMMCs). Experimental investigation on sinker EDM of high weight fraction of particulates in AA2014, i.e. 10 Wt.% Al2O3 and 20 Wt.% Al2O3, has not been reported in archival literature. The AMMCs were EDMed at variable peak currents, voltages, pulse on and pulse off times. The effects of process parameters on MRR, TWR and SR were analysed with comparisons made to show the effect of Al2O3 particulate contents.


2014 ◽  
Vol 699 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Atiqah Jaffar Sidek ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of Electrical Discharge Machining (EDM) die-sinking on material characteristics of LM6 (Al-Sil2) is studied. This is due to the machining process on sharp edge, pocket, deep slot and micro hole cannot be performed by milling and turning machine. The objective of this paper is to determine the relationship between the machining parameters such as pulse on time, pulse off time, peak current and voltage on material removal rate (MRR) that are electrode wear rate (EWR) and surface roughness (Ra). Graphite tool of diameter 15mm was chosen as an electrode. Taguchi method is used as analysis technique to develop experimental matrix that is used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that the current and pulse off time are significantly effected the MRR, EWR and Ra while pulse on time and voltage are less significant factors that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


Sign in / Sign up

Export Citation Format

Share Document