scholarly journals Micro-FEM based mechanical anisotropy measurement of the trabecular bone, in view of the structural anisotropy

Author(s):  
Éva Lakatos ◽  
Dominik Nagy ◽  
Csaba Dobó-Nagy
2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Arnav Sanyal ◽  
Tony M. Keaveny

The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computed tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor.


2005 ◽  
Vol 176 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Louis-S. Bouchard ◽  
Felix W. Wehrli ◽  
Chih-Liang Chin ◽  
Warren S. Warren

2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Arnav Sanyal ◽  
Joanna Scheffelin ◽  
Tony M. Keaveny

Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (μCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5 mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36), mechanical anisotropy (range of E3/E1 = 3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension, compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space. The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal boxlike shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized-strain space combined with a piecewise linear yield criterion in two planes for normal-shear loading (mean error ± SD: 4.6 ± 0.8% for the finite element data versus the criterion). This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.


2020 ◽  
Author(s):  
Maximilian Scheurer ◽  
Andreas Dreuw ◽  
Martin Head-Gordon ◽  
Tim Stauch

<div> <div> <div> <p>The surprisingly low rupture force and remarkable mechanical anisotropy of rubredoxin have been known for several years. Exploiting the first combination of steered molecular dynamics and the quantum chemical Judgement of Energy DIstribution (JEDI) analysis, the distribution of strain energy in the central part of rubredoxin is elucidated in real-time with unprecedented detail. In contrast to common belief that hydrogen bonds between neighboring amino acid backbones and the sulfur atoms of the central FeS4 unit in rubredoxin determine the low mechanical resistance of the protein, we demonstrate that structural anisotropy as well as the contribution of angle bendings in the FeS4 unit are instead the key factors responsible for the low rupture force in rubredoxin. In addition to clarifying the structural basis for the mechanical unfolding of an important metalloprotein, this study paves the way for in-depth investigations of an intriguing new class of mechanophores involving metal ions. </p> </div> </div> </div>


Author(s):  
Ramesh Raghupathy ◽  
Spencer P. Lake ◽  
Edward A. Sander ◽  
Victor H. Barocas

Few elastographic methods handle both anisotropy and inhomogeneity. Much of the focus has been on inhomogeneous materials that are locally isotropic. However, most load-bearing tissues (heart, ligament, blood vessels) are highly anisotropic, and the underlying structure is distinct and essential for function. With disease or damage, this structure is altered, and hence the potential for an elastographic tool that identifies regional changes in anisotropy is high. In this study we present a generalized anisotropic inverse mechanics (GAIM) method that is applicable to soft tissues and demonstrate its performance on tissue equivalents which serve as a convenient test case due to their inhomogeneity and the ease of pre-specifying the fiber alignment pattern.


2005 ◽  
Vol 127 (5) ◽  
pp. 742-750 ◽  
Author(s):  
Stavros Thomopoulos ◽  
Gregory M. Fomovsky ◽  
Jeffrey W. Holmes

An in vitro model system was developed to study structure-function relationships and the development of structural and mechanical anisotropy in collagenous tissues. Fibroblast-populated collagen gels were constrained either biaxially or uniaxially. Gel remodeling, biaxial mechanical properties, and collagen orientation were determined after 72h of culture. Collagen gels contracted spontaneously in the unconstrained direction, uniaxial mechanical constraints produced structural anisotropy, and this structural anisotropy was associated with mechanical anisotropy. Cardiac and tendon fibroblasts were compared to test the hypothesis that tendon fibroblasts should generate greater anisotropy in vitro. However, no differences were seen in either structure or mechanics of collagen gels populated with these two cell types, or between fibroblast populated gels and acellular gels. This study demonstrates our ability to control and measure the development of structural and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system. While imposed constraints were required for the development of anisotropy in this system, active remodeling of the gel by fibroblasts was not. This model system will provide a basis for investigating structure-function relationships in engineered constructs and for studying mechanisms underlying the development of anisotropy in collagenous tissues.


Author(s):  
Yuan Feng ◽  
Ruth J. Okamoto ◽  
Ravi Namani ◽  
Guy M. Genin ◽  
Philip V. Bayly

Axonal fiber tracts in white matter of the brain form anisotropic structures. It is assumed that this structural anisotropy causes mechanical anisotropy, making white matter tissue stiffer along the axonal fiber direction. This, in turn, will affect the mechanical loading of axonal tracts during traumatic brain injury (TBI). The goal of this study is to use a combination of in-vitro tests to characterize the mechanical anisotropy of white matter and compare it to gray matter, which is thought to be structurally and mechanically isotropic. A more complete understanding of the mechanical anisotropy of brain tissue will provide more accurate information for computational simulations of brain injury.


2013 ◽  
Vol 46 (15) ◽  
pp. 2659-2666 ◽  
Author(s):  
Mariana E. Kersh ◽  
Philippe K. Zysset ◽  
Dieter H. Pahr ◽  
Uwe Wolfram ◽  
David Larsson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document