scholarly journals Characterization of low-cost inkjet printed-photonic cured strain gauges for remote sensing and structural monitoring applications

Author(s):  
Juho Kerminen ◽  
◽  
Jenny Wiklund ◽  
Alp Karakoç ◽  
Kalle Ruttik ◽  
...  
Author(s):  
Juho Kerminen ◽  
Jenny Wiklund ◽  
Alp Karakoç ◽  
Kalle Ruttik ◽  
Riku Jäntti ◽  
...  

In the present work, cost-effective strain gauges were fabricated by using inkjet printing and photonic curing on flexible and recyclable PET substrates. Ohmic resistance (a.k.a. DC resistance) (R0) and complex electrical impedance (Z) as a function of test frequency were characterized, respectively, with the state-of-the-art electronic testing equipments. For the fabrication process, commercially available silver nanoparticle (AgNP) inks and printing substrates were used in order to eliminate any apriori ink processing. In order to validate the in-house cantilever beam measurement setup and devices, first, commercially available metallic foil strain gauges (with the provided gauge factor GF=2 by the manufacturer) were tested at different locations. Thereafter, the printed strain gauges were investigated with several repetitions at different measurement locations. The measurement results demonstrated an affordable, rapid and tailorable design and repeatable fabrication approach for strain gauges with GFavg~6.6, which has potential applications in remote sensing and structural monitoring applications.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1321 ◽  
Author(s):  
Enrique Villa ◽  
Natalia Arteaga-Marrero ◽  
Juan Ruiz-Alzola

Thermal imaging is a promising technology in the medical field. Recent developments in low-cost infrared (IR) sensors, compatible with smartphones, provide competitive advantages for home-monitoring applications. However, these sensors present reduced capabilities compared to more expensive high-end devices. In this work, the characterization of thermal cameras is described and carried out. This characterization includes non-uniformity (NU) effects and correction as well as the thermal cameras’ dependence on room temperature, noise-equivalent temperature difference (NETD), and response curve stability with temperature. Results show that low-cost thermal cameras offer good performance, especially when used in temperature-controlled environments, providing evidence of the suitability of such sensors for medical applications, particularly in the assessment of diabetic foot ulcers on which we focused this study.


1997 ◽  
Author(s):  
Robert P. Kenny ◽  
E. Gutierrez ◽  
Alfredo C. Lucia ◽  
Maurice P. Whelan ◽  
F. Gaiazzi

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


Sign in / Sign up

Export Citation Format

Share Document