scholarly journals Characterization of Low-Cost Inkjet Printed-Photonic Cured Strain Gauges for Remote Sensing and Structural Monitoring Applications

Author(s):  
Juho Kerminen ◽  
Jenny Wiklund ◽  
Alp Karakoç ◽  
Kalle Ruttik ◽  
Riku Jäntti ◽  
...  

In the present work, cost-effective strain gauges were fabricated by using inkjet printing and photonic curing on flexible and recyclable PET substrates. Ohmic resistance (a.k.a. DC resistance) (R0) and complex electrical impedance (Z) as a function of test frequency were characterized, respectively, with the state-of-the-art electronic testing equipments. For the fabrication process, commercially available silver nanoparticle (AgNP) inks and printing substrates were used in order to eliminate any apriori ink processing. In order to validate the in-house cantilever beam measurement setup and devices, first, commercially available metallic foil strain gauges (with the provided gauge factor GF=2 by the manufacturer) were tested at different locations. Thereafter, the printed strain gauges were investigated with several repetitions at different measurement locations. The measurement results demonstrated an affordable, rapid and tailorable design and repeatable fabrication approach for strain gauges with GFavg~6.6, which has potential applications in remote sensing and structural monitoring applications.

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Lakshmi Prasanna Koduru

Heavy metals are one of the primary contaminants in the environment [1]. Exposure to heavy metals, even at trace levels, is believed to be a high health risk for humans [2,3]. Heavy metals are naturally occurring throughout the earth’s crust [4]. But most of the environmental contamination results from the anthropogenic activities such as mining and smelting operations, industry, and domestic and agricultural use of metals and metalcontaining compounds. Migration of these contaminants into non-contaminated areas as dust or leachates through the soil and spreading of heavy metals containing sewage sludge are a few examples of events contributing towards contamination of the ecosystems [5]. Hence, water is the one of the major routes through which heavy metals and radionuclides may enter the human body [6,7]. The sources of water pollution are shown in Figure 1. The conventional wastewater purification techniques including chemical coagulation, photo degradation, precipitation, flocculation, activated sludge, membrane separation and ion exchange are limited to the removal of heavy metals at trace levels [7-9]. However, adsorption is one of the best methods for the purification of water, owing to its low cost and easy handling of materials [7,10-12]. Moreover, adsorption approaches using commercial activated carbon, micro-filtration and membrane techniques are effective, but their use is limited by the complicated installation process involved coupled with the high maintenance costs of the systems [7,13]. Hence, these drawbacks have necessitated the search for an alternative method which is inexpensive, renewable and cost-effective for the removal of heavy metals from aqueous solutions. Many scientific groups have prepared graphene or graphene oxide (GO) based hybrid nanocomposites for various potential applications [14-17]. The study of literature survey and stability of the GO-based nanocomposites prompted us to survey on graphene oxide and reduced graphene oxide-based inverse spinel nickel ferrite nanocomposites for the removal of heavy metals and radionuclides from water with the purpose of reducing their environmental impact


2021 ◽  
Vol 9 (1) ◽  
pp. 82
Author(s):  
Simone Baldanzi ◽  
Ignacio T. Vargas ◽  
Francisco Armijo ◽  
Miriam Fernández ◽  
Sergio A. Navarrete

Maritime enterprises have long sought solutions to reduce the negative consequences of the settlement and growth of marine biofouling (micro- and macro-organisms) on virtually all surfaces and materials deployed at sea. The development of biofouling control strategies requires solutions that are cost-effective and environmentally friendly. Polymer-based coatings, such as the poly (3,4-ethylenedioxythiophene) (PEDOT) and its potential applications, have blossomed over the last decade thanks to their low cost, nontoxicity, and high versatility. Here, using multiple-choice larval settlement experiments, we assessed the efficacy of PEDOT against the balanoid barnacle Notobalanus flosculus one of the most common biofouling species in Southeastern Pacific shores, and compared results against a commercially available antifouling (AF) coating, and biofilms at different stages of succession (1, 2, 4 and 8 weeks). We show that larval settlement on PEDOT-coated surfaces was similar to the settlement on AF-coated surfaces, while larvae settled abundantly on roughened acrylic and on early-to-intermediate stages of biofilm (one to four weeks old). These results are promising and suggest that PEDOT is a good candidate for fouling-resistant coating for specific applications at sea. Further studies to improve our understanding of the mechanisms of barnacle larval deterrence, as well as exposure to field conditions, are encouraged.


Author(s):  
Philadelphia Vutivi Ngobeni ◽  
Moses Basitere ◽  
Andile Thole

Abstract Poultry slaughterhouses are generally large consumers of fresh water, which is exhausted as wastewater characterized by a high concentration of biological oxygen demand (BOD), chemical oxygen demand COD, and fats, oil, and grease (FOG). Cost-effective methods are required for the treatment of poultry slaughterhouse wastewater, with the aim of attaining a high quality effluent that can be reused in industrial processes to promote sustainability. As compared to conventional treatment methods, electrocoagulation is an efficient and low-cost system. Electrocoagulation is environmentally friendly, treating wastewater without the need of chemicals, thus limiting secondary pollution. The metal anodes initiate electrochemical reactions for coagulation and flocculation. Its distinct advantages include compact installation, and simple operation. This paper offers a comprehensive review of recent literature that has been dedicated to utilizing electrocoagulation for poultry slaughterhouse wastewater treatment. This paper also examines aspects such as theory, potential applications, current applications, as well as economical assessment of the technique.


2019 ◽  
Vol 11 (21) ◽  
pp. 2539
Author(s):  
Azadeh Abdollahnejad ◽  
Dimitrios Panagiotidis ◽  
Lukáš Bílek

Advanced monitoring and mapping of forest areas using the latest technological advances in satellite imagery is an alternative solution for sustainable forest management compared to conventional ground measurements. Remote sensing products have been a key source of information and cost-effective options for monitoring changes in harvested areas. Despite recent advances in satellite technology with a broad variety of spectral and temporal resolutions, monitoring the areal extent of harvested forest areas in managed forests is still a challenge, primarily due to the highly dynamic spatiotemporal patterns of logging activities. Our goal was to introduce a plot-based method for monitoring harvested forest areas from very high-resolution (VHR), low-cost satellite images. Our method encompassed two data categories, which included vegetation indices (VIs) and texture analysis (TA). Each group of data was used to model the amount of harvested volume both independently and in combination. Our results indicated that the composition of all spectral bands can improve the accuracy of all models of average volume by 23.52 RMSE reduction and total volume by 33.57 RMSE reduction. This method demonstrated that monitoring and extrapolation of the calculated relation and results from smaller forested areas could be applied as an automatic remote-based supervised monitoring method over larger forest areas.


2018 ◽  
Vol 926 ◽  
pp. 101-106
Author(s):  
Achanai Buasri ◽  
Wachirapong Promsupa ◽  
Santi Wannato ◽  
Sujitra Wanta ◽  
Vorrada Loryuenyong

Nowadays, researchers have made attempts to seek for cost-effective and eco-friendly catalyst for transesterification reaction. One possible way to reduce the costs of the catalysts is to use biomass or industrial waste as catalytic materials. The use of waste materials as catalysts also reduces the cost of waste handling and disposal. The objective of this study was to investigate the potential of the low cost, environmentally friendly calcined marlstones to be a viable catalyst in the transesterification of Jatropha seed oil. The calcination of marlstones was conducted at 900 °C for 4 h, and then the modification of calcined marlstones via hydration-dehydration treatment. The effects of different preparation conditions on biodiesel yield were investigated. The solid catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and the Brunauer-Emmett-Teller (BET) method. The highest biodiesel yield of 97.56% for modified calcium oxide (CaO) catalyst was obtained under the optimum condition (reaction time 5 min, microwave power 600 W, methanol/oil molar ratio 9:1, and catalyst dosage 7 wt%). It was showing potential applications of novel catalyst in biodiesel industry.


Author(s):  
S. T. Aden ◽  
J. P. Bialas ◽  
Z. Champion ◽  
E. Levin ◽  
J. L. McCarty

Thermal remote sensing has a wide range of applications, though the extent of its use is inhibited by cost. Robotic and computer components are now widely available to consumers on a scale that makes thermal data a readily accessible resource. In this project, thermal imagery collected via a lightweight remote sensing Unmanned Aerial Vehicle (UAV) was used to create a surface temperature map for the purpose of providing wildland firefighting crews with a cost-effective and time-saving resource. The UAV system proved to be flexible, allowing for customized sensor packages to be designed that could include visible or infrared cameras, GPS, temperature sensors, and rangefinders, in addition to many data management options. Altogether, such a UAV system could be used to rapidly collect thermal and aerial data, with a geographic accuracy of less than one meter.


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


Sign in / Sign up

Export Citation Format

Share Document