scholarly journals On the Theory of ψ-Hilfer Nonlocal Cauchy Problem

Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

In this paper, we derive the representation formula of the solution for ψ-Hilfer fractional differential equation with constant coefficient in the form of Mittag-Leffler function by using Picard’s successive approximation. Moreover, by using some properties of Mittag-Leffler function and fixed point theorems such as Banach and Schaefer, we introduce new results of some qualitative properties of solution such as existence and uniqueness. The generalized Gronwall inequality lemma is used in analyze Eα -Ulam-Hyers stability. Finally, one example to illustrate the obtained results

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750056 ◽  
Author(s):  
Hojjat Afshari ◽  
Alireza Kheiryan

In this article we study a class of mixed monotone operators with convexity on ordered Banach spaces and present some new tripled fixed point theorems by means of partial order theory, we get the existence and uniqueness of tripled fixed points without assuming the operator to be compact or continuous, which extend the existing corresponding results. As applications, we utilize the results obtained in this paper to study the existence and uniqueness of positive solutions for a fractional differential equation boundary value problem.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 832
Author(s):  
Tanzeela Kanwal ◽  
Azhar Hussain ◽  
Hamid Baghani ◽  
Manuel de la Sen

We present the notion of orthogonal F -metric spaces and prove some fixed and periodic point theorems for orthogonal ⊥ Ω -contraction. We give a nontrivial example to prove the validity of our result. Finally, as application, we prove the existence and uniqueness of the solution of a nonlinear fractional differential equation.


2021 ◽  
Vol 5 (3) ◽  
pp. 66
Author(s):  
Azmat Ullah Khan Niazi ◽  
Jiawei He ◽  
Ramsha Shafqat ◽  
Bilal Ahmed

This paper concerns with the existence and uniqueness of the Cauchy problem for a system of fuzzy fractional differential equation with Caputo derivative of order q∈(1,2], 0cD0+qu(t)=λu(t)⊕f(t,u(t))⊕B(t)C(t),t∈[0,T] with initial conditions u(0)=u0,u′(0)=u1. Moreover, by using direct analytic methods, the Eq–Ulam-type results are also presented. In addition, several examples are given which show the applicability of fuzzy fractional differential equations.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 94 ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Kamal Shah ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet ◽  
...  

This paper presents a class of implicit pantograph fractional differential equation with more general Riemann-Liouville fractional integral condition. A certain class of generalized fractional derivative is used to set the problem. The existence and uniqueness of the problem is obtained using Schaefer’s and Banach fixed point theorems. In addition, the Ulam-Hyers and generalized Ulam-Hyers stability of the problem are established. Finally, some examples are given to illustrative the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Jieming Zhang

We are concerned with the existence and uniqueness of positive solutions for the following nonlinear perturbed fractional two-point boundary value problem:D0+αu(t)+f(t,u,u',…,u(n-2))+g(t)=0, 0<t<1, n-1<α≤n, n≥2,u(0)=u'(0)=⋯=u(n-2)(0)=u(n-2)(1)=0, whereD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem of generalized concave operators. An example is given to illustrate the main result.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
N. I. Mahmudov ◽  
S. Unul

Existence and uniqueness of solutions forα∈(2,3]order fractional differential equations with three-point fractional boundary and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed. The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Jaydev Dabas ◽  
Archana Chauhan ◽  
Mukesh Kumar

This paper is concerned with the existence and uniqueness of a mild solution of a semilinear fractional-order functional evolution differential equation with the infinite delay and impulsive effects. The existence and uniqueness of a mild solution is established using a solution operator and the classical fixed-point theorems.


2020 ◽  
Vol 36 (3) ◽  
pp. 453-462
Author(s):  
RODICA LUCA

We investigate the existence of solutions for a Riemann-Liouville fractional differential equation with a nonlinearity dependent of fractional integrals, subject to nonlocal boundary conditions which contain various fractional derivatives and Riemann-Stieltjes integrals. In the proof of our main results we use different fixed point theorems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Karim Guida ◽  
Lahcen Ibnelazyz ◽  
Khalid Hilal ◽  
Said Melliani

In this paper, we investigate the solutions of coupled fractional pantograph differential equations with instantaneous impulses. The work improves some existing results and contributes toward the development of the fractional differential equation theory. We first provide some definitions that will be used throughout the paper; after that, we give the existence and uniqueness results that are based on Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Two examples are given in the last part to support our study.


Sign in / Sign up

Export Citation Format

Share Document