scholarly journals Methods of Chemical and Thermochemical Processing of Hydrolytic Lignin

Author(s):  
Irina G. Sudakova ◽  
Alexander V. Levdansky ◽  
Boris N. Kuznetsov

The analysis of the latest publications on the use of hydrolytic lignin, which is a large-tonnage waste of wood chemical processing, was carried out. In its original form, the hydrolytic lignin is used as fuel, fuel briquettes and pellets, binders and adhesives, organic fertilizers, fillers and enterosorbents. The processing of hydrolytic lignin by chemical and thermochemical methods allows to significantly expand the range of valuable products obtained from it. They are used in chemical, oil and gas and construction industries, metallurgy and other areas. Hydrolytic lignin is most widely used for the production of carbon sorbents. Recently, methods of thermochemical processing of lignin into porous carbon materials with the required texture and strength characteristics as well as into valuable organic products have been developed

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tomoki Ogoshi ◽  
Yuma Sakatsume ◽  
Katsuto Onishi ◽  
Rui Tang ◽  
Kazuma Takahashi ◽  
...  

AbstractCarbon materials with controlled pore sizes at the nanometer level have been obtained by template methods, chemical vapor desorption, and extraction of metals from carbides. However, to produce porous carbons with controlled pore sizes at the Ångstrom-level, syntheses that are simple, versatile, and reproducible are desired. Here, we report a synthetic method to prepare porous carbon materials with pore sizes that can be precisely controlled at the Ångstrom-level. Heating first induces thermal polymerization of selected three-dimensional aromatic molecules as the carbon sources, further heating results in extremely high carbonization yields (>86%). The porous carbon obtained from a tetrabiphenylmethane structure has a larger pore size (4.40 Å) than those from a spirobifluorene (4.07 Å) or a tetraphenylmethane precursor (4.05 Å). The porous carbon obtained from tetraphenylmethane is applied as an anode material for sodium-ion battery.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 838-846
Author(s):  
Jun Kimura ◽  
Takahiro Ohkubo ◽  
Yuta Nishina ◽  
Koki Urita ◽  
Yasushige Kuroda

Porous BN with atomically heterogeneous surfaces can more strongly adsorb dinitrogen molecules than typical porous carbon materials.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 738
Author(s):  
Mohamed Gamal Mohamed ◽  
Mahmoud M. M. Ahmed ◽  
Wei-Ting Du ◽  
Shiao-Wei Kuo

In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.


2021 ◽  
Author(s):  
Sirui Liu ◽  
Ya ping Xu ◽  
Jinggao Wu ◽  
Jing Huang

Supercapacitors are of paramount importance for next-generation applications, demonstrating high energy output, an ultra-long cycle life and utilizing green and sustainable materials. Herein, we utilize celery, a common biomass from...


Author(s):  
Yurou Chen ◽  
Xin Feng ◽  
Qi Wang ◽  
WenXian Gu ◽  
Wanyi Wu ◽  
...  

This work presents a simple solvothermal method to synthesize Ti, N co-doped carbon materials, in which the inclusion of a small amount of transition metal Ti significantly improved their electrochemical capacitive performance.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 15639-15655
Author(s):  
Małgorzata Graś ◽  
Grzegorz Lota

The borohydride electrooxidation process is complex. Technological application of carbon materials is manifested not only in their use as a catalyst support, but also as a physical trap for hydrogen generated during the parasitic hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document