scholarly journals Optimal Control of Systems with Distributed Parameters

Author(s):  
Nikolay D. Demidenko ◽  
Lyudmila V. Kulagina ◽  
Artyom A. Pyanykh

The article presents outcomes of optimizing a distributed control system for objects with distributed parameters. Variational method was applied while optimization. Transfer functions are obtained for main channels of disturbances and controls. To describe processes in the time domain, a Laplace numerical method of inverting the transform is used. Numerical experiment for heat exchange systems of a counterflow heat exchanger is demonstrated. Various controllers have been tested in automatic control systems. Efficiency of distributed control of aeon of single-circuit and double-circuit control systems is shown. In this case, acceleration curves were obtained at the output of the control object. Distributed control functions are also highlighted. The numerical method provides an iterative calculation process with a fairly small number of iterations

Author(s):  
Sergej Vladilenovich Zaytsev

The article considers the problems of synthesis of different distributed controllers and methods for implementing the adaptation the system of these controllers. Each type of distributed controllers has its own parameters in the transfer functions. The parameters of the controller can be obtained after studying and identification of the distributed control object. In the transfer functions there are two parameters that can be changed in order to achieve the high-quality transient processes in the control system. These parameters are: weight coefficient of the distributed link ni and the proportionality coefficient of the distributed link Ei. The parameters of the distributed link G and s depend on the object structure and on the time (or the selected sampling interval of the digital controller), respectively. According to the results of the synthesis of parameters of distributed controllers, there have been proposed the methods for implementing adaptive setup of different controllers. Currently, the following controllers are available: distributed high-precision controller, space-amplifying controller, space-differentiating amplifier controller, spatially-isodromic controller for distributed control systems. There has been considered implementing a distributed controller and shown in which part it is necessary to be adapted. The controller type is selected according to the tasks to be solved by the distributed object control system. Depending on the controller type, in the implementation of controller blocks, there can be used the standard integration and differentiation blocks available in different programming languages for programmable logic controllers. The example given in the article was developed using the CoDeSys software package supplied with OVEN programmable logic controller.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012149
Author(s):  
V Kramar

Abstract The paper proposes an approach to constructing a mathematical model of lattice functions, which are mainly used in the study of discrete control systems in the time and domain of the Laplace transform. The proposed approach is based on the assumption of the physical absence of an impulse element. An alternative to the classical approach to the description of discrete data acquisition - the process of quantization in time, is considered. As a result, models of the lattice function in the time domain and the domain of the discrete Laplace transform are obtained. Based on the obtained mathematical models of lattice functions, a mathematical model of the time quantization element of the system is obtained. This will allow in the future to proceed to the construction of mathematical models of various discrete control systems, incl. expanding the proposed approaches to the construction of mathematical models of multi-cycle continuous-discrete automatic control systems


2021 ◽  
Vol 295 (2) ◽  
pp. 109-115
Author(s):  
Tetiana ROMANENKO ◽  
◽  
Nataliia RUSINA ◽  

The article presents examples of research of typical links of linear systems and construction and study of transient functions, namely: research of influence of parameters of elements of systems of automatic control of its quality. Programs for automatic control are developing rapidly, the main areas of which are related to the optimization of technological processes and robotics. This encourages the introduction into modern production of high-precision digital systems with more extensive use of computer systems. In the simulation process, there is often a need to carefully select and apply real objects to study the quality of automatic control systems. This can be achieved by using a visual programming language for modeling dynamic systems and designing VisSim. The connection of parameters of automatic control systems with indicators of its quality is investigated: by definition of error coefficient; research of influence of a constant time of a forcing link on quality of automatic control systems by the method of compensation of the part in the main inertia of the control object, for the use of the forcing link. As a result, of research graphic dependences of quality of linear systems of automatic control, research of influence of a constant of time of a forcing link on its quality, carrying out identification of the regulator and object of management of systems of automatic control are received. Studies of the process of modeling dynamic systems were visually presented using the visual programming language VisSim. In particular, by creating virtual laboratory stands to study the quality of different modes of automatic control systems in relation to the performance of signal generators and the calculation of the necessary parameters of the study.


2016 ◽  
Vol 5 ◽  
pp. 25-36 ◽  
Author(s):  
Valery Dudykevych ◽  
Blintsov Oleksandr

The definition of a new class of control objects is proposed. It is an underwater complex with flexible tethers (UCFT) for which there is the need to automate motion control under uncertainty and nonstationarity of own parameters and external disturbances. Classification of marine mobile objects and characteristics of the flexible tethers as UCFT elements is given. The basic UCFTs configurations that are used in the implementation of advanced underwater technologies are revealed. They include single-, double- and three-linked structures with surface or underwater support vessels and self-propelled or towed underwater vehicles. The role of mathematical modeling in tasks of motion control automation is shown. The tasks of UCFT mathematical modeling are formulated for synthesis and study of its automatic control systems. Generalized structures of mathematical models of UCFT basic elements are proposed as the basis for the creation of simulating complex to study the dynamics of its motion. The tasks of UCFT identification as a control object are formulated. Their consistent solution will help to obtain a UCFT mathematical model. The basic requirements for UCFT automatic motion control systems are determined. Their satisfaction will ensure implementation of selected underwater technology. Areas of development of synthesis methods of UCFT automatic control systems are highlighted.


Author(s):  
G. Kalimbetov ◽  
A. Toigozhinovа ◽  
W. Wojcik

Among the promising automatic control systems, logical-dynamic control systems that change both the structure and parameters of the control device using switches formed on the basis of a certain logical algorithm have proven themselves well. The use of logical algorithms as part of MACS subsystems for complex technical objects makes it possible to increase the static and dynamic accuracy of control due to purposeful qualitative and quantitative changes in the control signal. This approach will give the control system fundamentally new properties that allow to fully take into account the nature and dynamics of the movement of the control object. When developing existing logical control algorithms, the issues of their application for multi-connected and multifunctional objects control were not considered. Common to existing logical algorithms is that when switching the structure and/or changing parameters, only the dynamics of its own subsystem is taken into account, which is unacceptable in the case of multi-connected dynamic object control, since cross-links have a significant impact on the quality of control. Thus, the problem of synthesis of logical algorithms for multi-connected objects control is an actual theoretical and applied problem. Despite the considerable amount of research conducted in this area, the application of logical algorithms for complex multidimensional objects control is not sufficiently considered, and there is no unified design concept for this type of MACS, taking into account the required quality of functioning in various operating modes. In this regard, there is a need to synthesize algorithms for logical multi-connected control that form control signals in order to coordinate the actions of all separate MACS subsystems in accordance with new external conditions and operating modes. The problem under consideration determined the purpose of this work and the research objectives.


Author(s):  
Rafail Leonov ◽  

Research aim is to analyze a class of automatic control systems at mining and concentrating facilities, where controlling action is the consumption of fuel or substance by a transporting body in order to develop recommendations on stability and control quality improvement. Research methodology consists in working out a model of automatic control system and studying the infl uence of varying transportation delay on the model, which arises in the process of stabilizing the output value of the system of automatic control. The RMS error of output value control was measured on the system’s model when measuring the delay of the main controlling action. Discussion was carried out by the example of the control process where the output value of the control object is regulated by the conveyor which feeds the ore. It has been shown that when changing the controlling action (ore consumption), time the delivery time also changes at the same time. These facilities refer to the facilities with the varying parameter – delay in control; they are poorly explored. It has been shown that control systems like that cannot adequately operate in the general case. One of the main methods of improving the quality of such control systems is to use the Smith predictor. However, in this case the system of automatic control will operate adequately under constant parameters of the control object, which is highly unlikely in the conditions of mining treatment. Delay in such systems is defi nitely associated with the speed of material feed. It has been proposed to automatically change regulator’s settings depending on the speed of the conveyor. Material can be fed using an assembly with constant speed, as an alternative, while the consumption may be carried out in accordance with the variation of the control object output value by a separate feeder


2021 ◽  
pp. 12-22
Author(s):  
Serhii Kochuk ◽  
Dinh Dong Nguyen ◽  
Artem Nikitin ◽  
Rafael Trujillo Torres

The object of research in the article is various well-known approaches and methods of structural and parametric identification of dynamic controlled objects - unmanned aerial vehicles (UAVs). The subject of the research is the parameters of linear and nonlinear mathematical models of spatial and isolated movements, describing the dynamics and aerodynamic properties of the UAV and obtained both from the results of flight experiments and using computer object-oriented programs for 3-D UAV models. The goal is to obtain mathematical models of UAV flight dynamics in the form of differential equations or transfer functions, check them for reliability and the possibility of using them in problems of synthesis of algorithms for automatic control systems of UAVs. Tasks to be solved: evaluation of the analytical (parametric), direct (transient), as well as the identification method using the 3-D model of the control object. Methods used structural and parametric identification of dynamic objects; the determination of static and dynamic characteristics of mathematical models by the type of their transient process; the System Identification Toolbox package of the MatLab environment, the Flow Simulation subsystem of the SolidWorks software and the X-Plane software environment. The experimental parameters of UAV flights, as well as the results of modeling in three-dimensional environments, are the initial data for the identification of mathematical models. The following results were obtained: the possibility of analytical and computer identification of mathematical models by highly noisy parameters of the UAV flight was shown; the mathematical models of UAVs obtained after identification is reliable and adequately reproduce the dynamics of a real object. A comparative analysis of the considered UAV identification methods is conducted, their performance and efficiency are confirmed. Conclusions. The scientific novelty of the result obtained is as follows: good convergence, reliability and the possibility of using the considered identification methods for obtaining mathematical models of dynamic objects to synthesize algorithms for automatic control systems of UAVs is shown.


Sign in / Sign up

Export Citation Format

Share Document