Potential effects of future climate change on suitable habitat of Muntiacus crinifrons, an endangered and endemic species in China

2016 ◽  
Vol 24 (12) ◽  
pp. 1390-1399
Author(s):  
Juncheng Lei ◽  
◽  
◽  
◽  
◽  
...  
2010 ◽  
Vol 143 (11) ◽  
pp. 2453-2461 ◽  
Author(s):  
Lesley Gibson ◽  
Asha McNeill ◽  
Paul de Tores ◽  
Adrian Wayne ◽  
Colin Yates

2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2020 ◽  
Vol 12 (4) ◽  
pp. 1491
Author(s):  
Xuhui Zhang ◽  
Haiyan Wei ◽  
Zefang Zhao ◽  
Jing Liu ◽  
Quanzhong Zhang ◽  
...  

The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.


2018 ◽  
Vol 220 ◽  
pp. 67-75 ◽  
Author(s):  
S. Ayebare ◽  
A.J. Plumptre ◽  
D. Kujirakwinja ◽  
D. Segan

2021 ◽  
Author(s):  
Jiming Liu ◽  
Lianchun Wang ◽  
Caowen Sun ◽  
Benye Xi ◽  
Doudou Li ◽  
...  

Abstract Sapindus (Sapindus L.) is a widely distributed economically important tree genus that provides biodiesel, biomedical and biochemical products. However, with climate change, deforestation, and economic development, Sapindus germplasm resources have been lost. Therefore, utilising historical environmental data and future climate projections from the BCC-CSM2-MR global climate database, we simulated the present and future global distributions of suitable habitats for Sapindus using a Maximum Entropy (MaxEnt) model. The estimated ecological thresholds for critical environmental factors were: a minimum temperature of 0–20°C in the coldest month, soil moisture levels of 40–140 mm, a mean temperature of 2–25°C in the driest quarter, a mean temperature of 19–28°C in the wettest quarter, and a soil pH of 5.6–7.6. The total suitable habitat area was 6059.97 × 104 km2, which was unevenly distributed across six continents. As greenhouse gas emissions increased over time, the area of suitable habitats contracted in lower latitudes and expanded in higher latitudes. Consequently, surveys and conservation should be prioritised in southern hemisphere areas which are in danger of becoming unsuitable. In contrast, other areas in northern and central America, China, and India can be used for conservation and large-scale cultivation in the future.


2018 ◽  
Vol 19 (5) ◽  
pp. 1960-1977
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
NISYAWATI NISYAWATI ◽  
SUTARNO SUTARNO ◽  
ILYAS NURSAMSI

Abstract. Setyawan AD, Supriatna J, Nisyawati, Sutarno, Sugiyarto, Nursamsi I. 2018. Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas 19: 1960-1977. The current global climate is moving towards dangerous and unprecedented conditions that have been seen as a potentially devastating threat to the environment and all living things. Selaginella is a fern-allies that needs water as a medium for fertilization, hence its distribution is presumed to be affected by climate change. In Southeast Asia (SEA), there are two widely distributed selaginellas, namely Selaginella ciliaris and S. plana. S. ciliaris is a small herb (up to 4 cm), annual, abundant during the rainy season, and found in the middle-high plains, whereas S. plana is a stout large herb (up to 80 cm), perennial, and mainly found in the lowlands. The purpose of this study was to determine the potential niche distribution of S. ciliaris and S. plana under current climatic conditions, and to predict its future distribution under the impacts of climate change. We used Maxent software along with bioclimatic, edaphic, and UV radiation variables to model the potential niche distribution of those two selaginellas under current and future predictions climate conditions. We generated future predictions under four detailed bioclimatic scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) over three times intervals (2030, 2050, 2080). The results showed that future climatic conditions in the SEA had been predicted to significantly disrupt the distribution of suitable habitat of S. ciliaris and S. plana, and alter their geographic distribution patterns. Although some areas were predicted to become suitable habitat in the early period of future climate change, the overall projections show adverse effects of future climate conditions on the suitable habitat distribution of S. ciliaris and S. plana, as estimated losses of suitable habitat will be higher than the gains.


Author(s):  
Changjun Gu ◽  
Tu Yanli ◽  
Linshan Liu ◽  
Wei Bo ◽  
Yili Zhang ◽  
...  

Aim: Invasive alien species (IAS) threaten ecosystems and humans worldwide, and future climate change may accelerate the expansion of IAS. Predicting the suitable distributions of IAS can prevent their further expansion. Ageratina adenophora is a invasive weed over 30 countries in tropical and subtropical regions. However, the potential suitable distribution of A. adenophora remains unclear along with its response to climate change. This study explored and mapped the current and future potential distributions of Ageratina adenophora. Location: Global Taxa: Asteraceae A. adenophora (Spreng.) R.M.King & H.Rob. Commonly known as Crofton weed. Methods: Based on A. adenophora occurrence data and climate data, we predicted its potential distribution of this weed under current and future (four RCPs in 2050 and 2070) by MaxEnt model. We used ArcGIS 10.4 to explore the distribution characteristics of this weed and the ‘ecospat’ package in R to analyse its altitudinal distribution changes. Results: The area under the curve value (>0.9) indicated excelled model performance. Among environment factors, Mean Temperature of Coldest Quarter contributed most to the model. Globally, the suitable habitat for A.adenophora invasion decreased under climate change scenarios, although regional increase were observed, including in six biodiversity hotspot regions. The potential suitable habitat of A.adenophora under climate change moved toward regions with higher elevation. Main Conclusions: Temperature was the most important variable influencing the distribution of A. Adenophora. Under the background of warming climate, the potential distribution range of A.adenophora will shrink globally but increase regionally. The distribution of A.adenophora will shift toward higher elevation under climate change. Mountain ecosystems are of special concern as they are rich in biodiversity and sensitive to climate change, and increasing human activities provide more opportunities for IAS invasion.


2021 ◽  
Vol 9 ◽  
Author(s):  
Stephanie K. Erlandson ◽  
Jesse Bellemare ◽  
David A. Moeller

Biodiversity hotspots host a high diversity of narrowly distributed endemic species, which are increasingly threatened by climate change. In eastern North America, the highest concentration of plant diversity and endemism occurs in the Southern Appalachian Mountains (SAM). It has been hypothesized that this region served as a refugium during Pleistocene glacial cycles and that postglacial migration northward was dispersal limited. We tested this hypothesis using species distribution models for eight forest herb species. We also quantified the extent to which the geography of suitable habitat shifted away from the current range with climate change. We developed species distribution models for four forest herb species endemic to the SAM and four that co-occur in the same SAM habitats but have broader ranges. For widespread species, we built models using (1) all occurrences and (2) only those that overlap the SAM hotspot in order to evaluate the extent of Hutchinsonian shortfalls and the potential for models to predict suitable habitat beyond the SAM. We evaluated the extent to which predicted climatically suitable areas are projected to shift away from their current ranges under future climate change. We detected unoccupied but suitable habitat in regions up to 1,100 km north of the endemic species’ ranges. Endemic ranges are disjunct from suitable northern areas due to a ∼100–150 km gap of unsuitable habitat. Under future climate change, models predicted severe reductions in suitable habitat within current endemic ranges. For non-endemic species, we found similar overall patterns and gap of unsuitability in the same geographic location. Our results suggest a history of dispersal limitation following the last glacial maximum along with an environmental barrier to northward migration. Conservation of endemic species would likely require intervention and assisted migration to suitable habitat in northern New England and Canada.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhenhua Luo ◽  
Xiaoyi Wang ◽  
Shaofa Yang ◽  
Xinlan Cheng ◽  
Yang Liu ◽  
...  

Abstract Background Understanding the impacts of past and contemporary climate change on biodiversity is critical for effective conservation. Amphibians have weak dispersal abilities, putting them at risk of habitat fragmentation and loss. Both climate change and anthropogenic disturbances exacerbate these risks, increasing the likelihood of additional amphibian extinctions in the near future. The giant spiny frog (Quasipaa spinosa), an endemic species to East Asia, has faced a dramatic population decline over the last few decades. Using the giant spiny frog as an indicator to explore how past and future climate changes affect landscape connectivity, we characterized the shifts in the suitable habitat and habitat connectivity of the frog. Results We found a clear northward shift and a reduction in the extent of suitable habitat during the Last Glacial Maximum for giant spiny frogs; since that time, there has been an expansion of the available habitat. Our modelling showed that “overwarm” climatic conditions would most likely cause a decrease in the available habitat and an increase in the magnitude of population fragmentation in the future. We found that the habitat connectivity of the studied frogs will decrease by 50–75% under future climate change. Our results strengthen the notion that the mountains in southern China and the Sino-Vietnamese transboundary regions can act as critical refugia and priority areas of conservation planning going forward. Conclusions Given that amphibians are highly sensitive to environmental changes, our findings highlight that the responses of habitat suitability and connectivity to climate change can be critical considerations in future conservation measures for species with weak dispersal abilities and should not be neglected, as they all too often are.


Sign in / Sign up

Export Citation Format

Share Document