scholarly journals The Real Time Implementation of a Chaotic System’s Synchronization for Secure Communication

2018 ◽  
Vol 25 (Supplement 1) ◽  
Author(s):  
Selvaraj Kesavan ◽  
Senthilkumar J. ◽  
Suresh Y. ◽  
Mohanraj V.

In establishing a healthy environment for connectivity devices, it is essential to ensure that privacy and security of connectivity devices are well protected. The modern world lives on data, information, and connectivity. Various kinds of sensors and edge devices stream large volumes of data to the cloud platform for storing, processing, and deriving insights. An internet of things (IoT) system poses certain difficulties in discretely identifying, remotely configuring, and controlling the devices, and in the safe transmission of data. Mutual authentication of devices and networks is crucial to initiate secure communication. It is important to keep the data in a secure manner during transmission and in store. Remotely operated devices help to monitor, control, and manage the IoT system efficiently. This chapter presents a review of the approaches and methodologies employed for certificate provisioning, device onboarding, monitoring, managing, and configuring of IoT systems. It also examines the real time challenges and limitations in and future scope for IoT systems.


2020 ◽  
Vol 37 (4) ◽  
pp. 639-645
Author(s):  
Gülden Günay Bulut ◽  
Mehmet Cem Çatalbaş ◽  
Hasan Güler

In recent years, chaotic systems have begun to take a substantial place in literature due to increasing importance of secure communication. Chaotic synchronization which has emerged as a necessity for secure communication can now be performed with many different methods. This study purposes the Master-Slave synchronization via active controller and real time simulation of five different chaotic systems such as Lorenz, Sprott, Rucklidge, Moore-Spiegel, Rössler. Master slave synchronization was performed because of synchronization realized between the same type of chaotic systems with different initial parameters and also because of the systems were expected to behave similarly as a result of synchronization. Active control method was used to amplify the difference signal between master and slave systems which have different initial parameters and to return back synchronization information to the slave system. The real time simulation and synchronization of the master and slave systems performed successfully in LabVIEW environment. Furthermore, for the real time implementation, analogue outputs of NI-DAQ card used and real time results also were observed on an oscilloscope and secure communication application using sinusoidal signal and an image encryption application achieved successfully.


2011 ◽  
Vol 204-210 ◽  
pp. 508-511
Author(s):  
Hong He ◽  
Hong Dong ◽  
Tong Yang ◽  
Lin He ◽  
Yi Wu

In resent years, secure communication is becoming one of the study hotspot in information safety. Secure communication is a way of correspondence, which transmits the desired information in the channel by adopting encryption measure, and then carries on decryption in receiver to recover the messages. Chaotic encryption is making use of random-like characteristic of the chaotic signal to encrypt the plaintext, and secure the real time communication. Taking one sine and square wave signal for examples respectively, the information can be encrypted by using the model of one-way coupled map lattice. Also, it is available to actualize encryption and decryption of the information by choose different keys when the model requires the matching keys precisely.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Author(s):  
Jiyang Yu ◽  
Dan Huang ◽  
Siyang Zhao ◽  
Nan Pei ◽  
Huixia Cheng ◽  
...  

Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Sign in / Sign up

Export Citation Format

Share Document