scholarly journals A Comparative Study on Mechanical Properties of Basalt Fiber Reinforced Concrete with Partial Replacement of Cement with GGBS

Author(s):  
S. Sai Charan ◽  
CH. L. K Murthy Gupta ◽  
2011 ◽  
Vol 194-196 ◽  
pp. 1103-1108 ◽  
Author(s):  
Yong Xin Yang ◽  
Jie Lian

In this paper, mechanical performances of 480 specimens are tested and influences of basalt fiber ratio, slenderness, soakage material are studied. Results indicate that mechanical properties of BFRC are better than plain concrete. It can be found that the best mechanical performance may be get when the basalt fiber soaked by water-solubility material and its ratio at 8.4 to 14 kg per square meter as well as slenderness at 600 to 800.


2021 ◽  
Vol 20 (1) ◽  
pp. 62-90
Author(s):  
J. Vinotha Jenifer ◽  
◽  
D. Brindha ◽  

The conventional concrete is considered to be critical in various constructional applications due to its setbacks such as service load failures, brittle property, low ductility and low tensile capacity. Apart from the natural bridging mechanism (aggregate bridging), an additional bridging mechanism is necessary to overcome the existing setbacks in plain cement concrete. Thus concrete with one or more types of fibers in suitable combinations can augment the mechanical performance of concrete causing a positive synergy effect. Along with the two control mixes with and without copper slag as partial replacement of fine aggregate, two different groups of hybrid combination of fibers such as steel and basalt were cast with 3 different groups of coarse aggregate proportions of sizes 20 mm and 12.5 mm. The hybridization of fibers is assessed in this study under compression, tension, flexure and fracture. Stress-strain data were recorded under compression to validate the strain capacity of the mixtures. The mechanical properties were analyzed for the positive hybrid effect and the influencing factors were copper slag, hybrid fiber combination and coarse aggregate proportions. The optimum volume fraction of fibers and mix proportions were highlighted based on various behaviors of concrete. Steel as macro fibers and basalt as microfibers were examined under microstructural studies (SEM and EDX). The results from the flexural toughness showcased the potential of hybrid fibers with greater energy absorption capacity ensuring the ductile property of the proposed hybrid fiber reinforced concrete.


2019 ◽  
Vol 8 (3) ◽  
pp. 2909-2912

The efficacy of fiber reinforced concrete in various application of civil engineering is unassailable. It is a heterogeneous material that includes the fibrous substance which increases its structural integrity and cohesion. In recent years, continuous basalt fibers extruded from naturally basalt rock are attracted attention due to its high temperature and abrasion resistance. Basalt fibers has emerged as a contender in fiber reinforcement composites. This paper aims to evaluate the outcome of basalt fiber on the mechanical strength of concrete and also identify the content that have a optimum influence on concrete. Compressive, split tensile and flexural strength of basalt fiber reinforced concrete is increased than the control concrete. The experimental study shows that the mechanical strength of concrete is increased up to 0.9% of basalt fiber in volume fraction. From the result it is observed that the optimum content of Basalt fiber is 0.9% and the ability of basalt fiber to arrest the cracks area indicated as reason for escalation in mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document